This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcadd.1 | |- ( ph -> P e. Prime ) |
|
| pcadd.2 | |- ( ph -> A e. QQ ) |
||
| pcadd.3 | |- ( ph -> B e. QQ ) |
||
| pcadd.4 | |- ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) |
||
| Assertion | pcadd | |- ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcadd.1 | |- ( ph -> P e. Prime ) |
|
| 2 | pcadd.2 | |- ( ph -> A e. QQ ) |
|
| 3 | pcadd.3 | |- ( ph -> B e. QQ ) |
|
| 4 | pcadd.4 | |- ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) |
|
| 5 | elq | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
|
| 6 | 2 5 | sylib | |- ( ph -> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 7 | elq | |- ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
|
| 8 | 3 7 | sylib | |- ( ph -> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
| 9 | pcxcl | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
|
| 10 | 1 2 9 | syl2anc | |- ( ph -> ( P pCnt A ) e. RR* ) |
| 11 | 10 | xrleidd | |- ( ph -> ( P pCnt A ) <_ ( P pCnt A ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt A ) ) |
| 13 | oveq2 | |- ( B = 0 -> ( A + B ) = ( A + 0 ) ) |
|
| 14 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 15 | 2 14 | syl | |- ( ph -> A e. CC ) |
| 16 | 15 | addridd | |- ( ph -> ( A + 0 ) = A ) |
| 17 | 13 16 | sylan9eqr | |- ( ( ph /\ B = 0 ) -> ( A + B ) = A ) |
| 18 | 17 | oveq2d | |- ( ( ph /\ B = 0 ) -> ( P pCnt ( A + B ) ) = ( P pCnt A ) ) |
| 19 | 12 18 | breqtrrd | |- ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| 20 | 19 | a1d | |- ( ( ph /\ B = 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 21 | reeanv | |- ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) ) |
|
| 22 | reeanv | |- ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) ) |
|
| 23 | 1 | ad3antrrr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. Prime ) |
| 24 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 25 | 23 24 | syl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. NN ) |
| 26 | simplrl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. ZZ ) |
|
| 27 | simprrl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( x / y ) ) |
|
| 28 | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
|
| 29 | 23 28 | syl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt 0 ) = +oo ) |
| 30 | 3 | ad3antrrr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. QQ ) |
| 31 | simpllr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B =/= 0 ) |
|
| 32 | pcqcl | |- ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
|
| 33 | 23 30 31 32 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ZZ ) |
| 34 | 33 | zred | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. RR ) |
| 35 | ltpnf | |- ( ( P pCnt B ) e. RR -> ( P pCnt B ) < +oo ) |
|
| 36 | rexr | |- ( ( P pCnt B ) e. RR -> ( P pCnt B ) e. RR* ) |
|
| 37 | pnfxr | |- +oo e. RR* |
|
| 38 | xrltnle | |- ( ( ( P pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) |
|
| 39 | 36 37 38 | sylancl | |- ( ( P pCnt B ) e. RR -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) |
| 40 | 35 39 | mpbid | |- ( ( P pCnt B ) e. RR -> -. +oo <_ ( P pCnt B ) ) |
| 41 | 34 40 | syl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. +oo <_ ( P pCnt B ) ) |
| 42 | 29 41 | eqnbrtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. ( P pCnt 0 ) <_ ( P pCnt B ) ) |
| 43 | 4 | ad3antrrr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 44 | oveq2 | |- ( A = 0 -> ( P pCnt A ) = ( P pCnt 0 ) ) |
|
| 45 | 44 | breq1d | |- ( A = 0 -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) |
| 46 | 43 45 | syl5ibcom | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A = 0 -> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) |
| 47 | 46 | necon3bd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( -. ( P pCnt 0 ) <_ ( P pCnt B ) -> A =/= 0 ) ) |
| 48 | 42 47 | mpd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A =/= 0 ) |
| 49 | 27 48 | eqnetrrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / y ) =/= 0 ) |
| 50 | simprll | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. NN ) |
|
| 51 | 50 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. CC ) |
| 52 | 50 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y =/= 0 ) |
| 53 | 51 52 | div0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / y ) = 0 ) |
| 54 | oveq1 | |- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
|
| 55 | 54 | eqeq1d | |- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 56 | 53 55 | syl5ibrcom | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 57 | 56 | necon3d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
| 58 | 49 57 | mpd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x =/= 0 ) |
| 59 | pczcl | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
|
| 60 | 23 26 58 59 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. NN0 ) |
| 61 | 25 60 | nnexpcld | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. NN ) |
| 62 | 61 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. CC ) |
| 63 | 62 51 | mulcomd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) x. y ) = ( y x. ( P ^ ( P pCnt x ) ) ) ) |
| 64 | 63 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
| 65 | 26 | zcnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. CC ) |
| 66 | 23 50 | pccld | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. NN0 ) |
| 67 | 25 66 | nnexpcld | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. NN ) |
| 68 | 67 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. CC ) |
| 69 | 61 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) =/= 0 ) |
| 70 | 67 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) =/= 0 ) |
| 71 | 65 62 51 68 69 70 52 | divdivdivd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) ) |
| 72 | 27 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) |
| 73 | pcdiv | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
|
| 74 | 23 26 58 50 73 | syl121anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 75 | 72 74 | eqtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 76 | 75 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) ) |
| 77 | 25 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. CC ) |
| 78 | 25 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P =/= 0 ) |
| 79 | 66 | nn0zd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. ZZ ) |
| 80 | 60 | nn0zd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. ZZ ) |
| 81 | 77 78 79 80 | expsubd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) |
| 82 | 76 81 | eqtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) |
| 83 | 82 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) |
| 84 | 27 | oveq1d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) |
| 85 | 65 51 62 68 52 70 69 | divdivdivd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
| 86 | 83 84 85 | 3eqtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
| 87 | 64 71 86 | 3eqtr4d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( A / ( P ^ ( P pCnt A ) ) ) ) |
| 88 | 87 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) = ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
| 89 | 2 | ad3antrrr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. QQ ) |
| 90 | 89 14 | syl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. CC ) |
| 91 | pcqcl | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ ) |
|
| 92 | 23 89 48 91 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) e. ZZ ) |
| 93 | 77 78 92 | expclzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) e. CC ) |
| 94 | 77 78 92 | expne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) =/= 0 ) |
| 95 | 90 93 94 | divcan2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A ) |
| 96 | 88 95 | eqtr2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) ) |
| 97 | simplrr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. ZZ ) |
|
| 98 | simprrr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( z / w ) ) |
|
| 99 | 98 31 | eqnetrrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / w ) =/= 0 ) |
| 100 | simprlr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. NN ) |
|
| 101 | 100 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. CC ) |
| 102 | 100 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w =/= 0 ) |
| 103 | 101 102 | div0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / w ) = 0 ) |
| 104 | oveq1 | |- ( z = 0 -> ( z / w ) = ( 0 / w ) ) |
|
| 105 | 104 | eqeq1d | |- ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) ) |
| 106 | 103 105 | syl5ibrcom | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z = 0 -> ( z / w ) = 0 ) ) |
| 107 | 106 | necon3d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) ) |
| 108 | 99 107 | mpd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z =/= 0 ) |
| 109 | pczcl | |- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 ) |
|
| 110 | 23 97 108 109 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. NN0 ) |
| 111 | 25 110 | nnexpcld | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. NN ) |
| 112 | 111 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. CC ) |
| 113 | 112 101 | mulcomd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) x. w ) = ( w x. ( P ^ ( P pCnt z ) ) ) ) |
| 114 | 113 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
| 115 | 97 | zcnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. CC ) |
| 116 | 23 100 | pccld | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. NN0 ) |
| 117 | 25 116 | nnexpcld | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. NN ) |
| 118 | 117 | nncnd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. CC ) |
| 119 | 111 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) =/= 0 ) |
| 120 | 117 | nnne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) =/= 0 ) |
| 121 | 115 112 101 118 119 120 102 | divdivdivd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) ) |
| 122 | 98 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) ) |
| 123 | pcdiv | |- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
|
| 124 | 23 97 108 100 123 | syl121anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 125 | 122 124 | eqtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 126 | 125 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 127 | 116 | nn0zd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. ZZ ) |
| 128 | 110 | nn0zd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. ZZ ) |
| 129 | 77 78 127 128 | expsubd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) |
| 130 | 126 129 | eqtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) |
| 131 | 130 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) |
| 132 | 98 | oveq1d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) |
| 133 | 115 101 112 118 102 120 119 | divdivdivd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
| 134 | 131 132 133 | 3eqtrd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
| 135 | 114 121 134 | 3eqtr4d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( B / ( P ^ ( P pCnt B ) ) ) ) |
| 136 | 135 | oveq2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) = ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) ) |
| 137 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 138 | 30 137 | syl | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. CC ) |
| 139 | 77 78 33 | expclzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) e. CC ) |
| 140 | 77 78 33 | expne0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) =/= 0 ) |
| 141 | 138 139 140 | divcan2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) = B ) |
| 142 | 136 141 | eqtr2d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) ) |
| 143 | eluz | |- ( ( ( P pCnt A ) e. ZZ /\ ( P pCnt B ) e. ZZ ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) |
|
| 144 | 92 33 143 | syl2anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) |
| 145 | 43 144 | mpbird | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) ) |
| 146 | pczdvds | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P ^ ( P pCnt x ) ) || x ) |
|
| 147 | 23 26 58 146 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) || x ) |
| 148 | 61 | nnzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. ZZ ) |
| 149 | dvdsval2 | |- ( ( ( P ^ ( P pCnt x ) ) e. ZZ /\ ( P ^ ( P pCnt x ) ) =/= 0 /\ x e. ZZ ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) |
|
| 150 | 148 69 26 149 | syl3anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) |
| 151 | 147 150 | mpbid | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) |
| 152 | pczndvds2 | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) |
|
| 153 | 23 26 58 152 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) |
| 154 | 151 153 | jca | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ /\ -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) ) |
| 155 | pcdvds | |- ( ( P e. Prime /\ y e. NN ) -> ( P ^ ( P pCnt y ) ) || y ) |
|
| 156 | 23 50 155 | syl2anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) || y ) |
| 157 | 67 | nnzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. ZZ ) |
| 158 | 50 | nnzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. ZZ ) |
| 159 | dvdsval2 | |- ( ( ( P ^ ( P pCnt y ) ) e. ZZ /\ ( P ^ ( P pCnt y ) ) =/= 0 /\ y e. ZZ ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) |
|
| 160 | 157 70 158 159 | syl3anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) |
| 161 | 156 160 | mpbid | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) |
| 162 | 50 | nnred | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. RR ) |
| 163 | 67 | nnred | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. RR ) |
| 164 | 50 | nngt0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < y ) |
| 165 | 67 | nngt0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt y ) ) ) |
| 166 | 162 163 164 165 | divgt0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) |
| 167 | elnnz | |- ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN <-> ( ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ /\ 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) ) |
|
| 168 | 161 166 167 | sylanbrc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. NN ) |
| 169 | pcndvds2 | |- ( ( P e. Prime /\ y e. NN ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) |
|
| 170 | 23 50 169 | syl2anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) |
| 171 | 168 170 | jca | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN /\ -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) ) |
| 172 | pczdvds | |- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P ^ ( P pCnt z ) ) || z ) |
|
| 173 | 23 97 108 172 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) || z ) |
| 174 | 111 | nnzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. ZZ ) |
| 175 | dvdsval2 | |- ( ( ( P ^ ( P pCnt z ) ) e. ZZ /\ ( P ^ ( P pCnt z ) ) =/= 0 /\ z e. ZZ ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) |
|
| 176 | 174 119 97 175 | syl3anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) |
| 177 | 173 176 | mpbid | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) |
| 178 | pczndvds2 | |- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) |
|
| 179 | 23 97 108 178 | syl12anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) |
| 180 | 177 179 | jca | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ /\ -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) ) |
| 181 | pcdvds | |- ( ( P e. Prime /\ w e. NN ) -> ( P ^ ( P pCnt w ) ) || w ) |
|
| 182 | 23 100 181 | syl2anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) || w ) |
| 183 | 117 | nnzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. ZZ ) |
| 184 | 100 | nnzd | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. ZZ ) |
| 185 | dvdsval2 | |- ( ( ( P ^ ( P pCnt w ) ) e. ZZ /\ ( P ^ ( P pCnt w ) ) =/= 0 /\ w e. ZZ ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) |
|
| 186 | 183 120 184 185 | syl3anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) |
| 187 | 182 186 | mpbid | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) |
| 188 | 100 | nnred | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. RR ) |
| 189 | 117 | nnred | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. RR ) |
| 190 | 100 | nngt0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < w ) |
| 191 | 117 | nngt0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt w ) ) ) |
| 192 | 188 189 190 191 | divgt0d | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) |
| 193 | elnnz | |- ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN <-> ( ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ /\ 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) ) |
|
| 194 | 187 192 193 | sylanbrc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. NN ) |
| 195 | pcndvds2 | |- ( ( P e. Prime /\ w e. NN ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) |
|
| 196 | 23 100 195 | syl2anc | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) |
| 197 | 194 196 | jca | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN /\ -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) ) |
| 198 | 23 96 142 145 154 171 180 197 | pcaddlem | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| 199 | 198 | expr | |- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 200 | 199 | rexlimdvva | |- ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 201 | 22 200 | biimtrrid | |- ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 202 | 201 | rexlimdvva | |- ( ( ph /\ B =/= 0 ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 203 | 21 202 | biimtrrid | |- ( ( ph /\ B =/= 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 204 | 20 203 | pm2.61dane | |- ( ph -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
| 205 | 6 8 204 | mp2and | |- ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |