This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omxpen . (Contributed by Mario Carneiro, 3-Mar-2013) (Revised by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | omxpenlem.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) | |
| Assertion | omxpenlem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omxpenlem.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) | |
| 2 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → Ord 𝐵 ) |
| 4 | simprl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐵 ) | |
| 5 | ordsucss | ⊢ ( Ord 𝐵 → ( 𝑥 ∈ 𝐵 → suc 𝑥 ⊆ 𝐵 ) ) | |
| 6 | 3 4 5 | sylc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → suc 𝑥 ⊆ 𝐵 ) |
| 7 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 8 | 7 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ On ) |
| 9 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → suc 𝑥 ∈ On ) |
| 11 | simplr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐵 ∈ On ) | |
| 12 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐴 ∈ On ) | |
| 13 | omwordi | ⊢ ( ( suc 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( suc 𝑥 ⊆ 𝐵 → ( 𝐴 ·o suc 𝑥 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) | |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( suc 𝑥 ⊆ 𝐵 → ( 𝐴 ·o suc 𝑥 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
| 15 | 6 14 | mpd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐴 ·o suc 𝑥 ) ⊆ ( 𝐴 ·o 𝐵 ) ) |
| 16 | simprr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 17 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) | |
| 18 | 17 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ On ) |
| 19 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) | |
| 20 | 12 8 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
| 21 | oaord | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) | |
| 22 | 18 12 20 21 | syl3anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
| 23 | 16 22 | mpbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 24 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) | |
| 25 | 12 8 24 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 26 | 23 25 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) |
| 27 | 15 26 | sseldd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
| 28 | 27 | ralrimivva | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
| 29 | 1 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ↔ 𝐹 : ( 𝐵 × 𝐴 ) ⟶ ( 𝐴 ·o 𝐵 ) ) |
| 30 | 28 29 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) ⟶ ( 𝐴 ·o 𝐵 ) ) |
| 31 | 30 | ffnd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 Fn ( 𝐵 × 𝐴 ) ) |
| 32 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝐴 ∈ On ) | |
| 33 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 34 | onelon | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝑚 ∈ On ) | |
| 35 | 33 34 | sylan | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝑚 ∈ On ) |
| 36 | noel | ⊢ ¬ 𝑚 ∈ ∅ | |
| 37 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) | |
| 38 | om0r | ⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) | |
| 39 | 37 38 | sylan9eqr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
| 40 | 39 | eleq2d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ↔ 𝑚 ∈ ∅ ) ) |
| 41 | 36 40 | mtbiri | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ¬ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) |
| 42 | 41 | ex | ⊢ ( 𝐵 ∈ On → ( 𝐴 = ∅ → ¬ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 43 | 42 | necon2ad | ⊢ ( 𝐵 ∈ On → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) → 𝐴 ≠ ∅ ) ) |
| 44 | 43 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) → 𝐴 ≠ ∅ ) ) |
| 45 | 44 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝐴 ≠ ∅ ) |
| 46 | omeu | ⊢ ( ( 𝐴 ∈ On ∧ 𝑚 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃! 𝑛 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) | |
| 47 | 32 35 45 46 | syl3anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃! 𝑛 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) |
| 48 | vex | ⊢ 𝑚 ∈ V | |
| 49 | vex | ⊢ 𝑛 ∈ V | |
| 50 | 48 49 | brcnv | ⊢ ( 𝑚 ◡ 𝐹 𝑛 ↔ 𝑛 𝐹 𝑚 ) |
| 51 | eleq1 | ⊢ ( 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) | |
| 52 | 51 | biimpac | ⊢ ( ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
| 53 | 7 | ex | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
| 55 | simplll | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On ) | |
| 56 | simpr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) | |
| 57 | 55 56 19 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
| 58 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑦 ∈ 𝐴 ) | |
| 59 | 55 58 17 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑦 ∈ On ) |
| 60 | oaword1 | ⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) | |
| 61 | 57 59 60 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
| 62 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) | |
| 63 | 33 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 64 | ontr2 | ⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( ( ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) | |
| 65 | 57 63 64 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ( ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 66 | 61 62 65 | mp2and | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
| 67 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝐵 ∈ On ) | |
| 68 | 62 | ne0d | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝐵 ) ≠ ∅ ) |
| 69 | on0eln0 | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) | |
| 70 | 63 69 | syl | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
| 71 | 68 70 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ∅ ∈ ( 𝐴 ·o 𝐵 ) ) |
| 72 | om00el | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) | |
| 73 | 72 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) |
| 74 | 71 73 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) |
| 75 | 74 | simpld | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ∅ ∈ 𝐴 ) |
| 76 | omord2 | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) | |
| 77 | 56 67 55 75 76 | syl31anc | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 78 | 66 77 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ 𝐵 ) |
| 79 | 78 | ex | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ On → 𝑥 ∈ 𝐵 ) ) |
| 80 | 54 79 | impbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ On ) ) |
| 81 | 80 | expr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ On ) ) ) |
| 82 | 81 | pm5.32rd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 83 | 52 82 | sylan2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 84 | 83 | expr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) ) ) |
| 85 | 84 | pm5.32rd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ) |
| 86 | eqcom | ⊢ ( 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) | |
| 87 | 86 | anbi2i | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) |
| 88 | 85 87 | bitrdi | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
| 89 | 88 | anbi2d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ↔ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) ) |
| 90 | an12 | ⊢ ( ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) | |
| 91 | 89 90 | bitrdi | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) ) |
| 92 | 91 | 2exbidv | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) ) |
| 93 | df-mpo | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) } | |
| 94 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) } = { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } | |
| 95 | 1 93 94 | 3eqtri | ⊢ 𝐹 = { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } |
| 96 | 95 | breqi | ⊢ ( 𝑛 𝐹 𝑚 ↔ 𝑛 { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } 𝑚 ) |
| 97 | df-br | ⊢ ( 𝑛 { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } 𝑚 ↔ 〈 𝑛 , 𝑚 〉 ∈ { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } ) | |
| 98 | opabidw | ⊢ ( 〈 𝑛 , 𝑚 〉 ∈ { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ) | |
| 99 | 96 97 98 | 3bitri | ⊢ ( 𝑛 𝐹 𝑚 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ) |
| 100 | r2ex | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) | |
| 101 | 92 99 100 | 3bitr4g | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑛 𝐹 𝑚 ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
| 102 | 50 101 | bitrid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑚 ◡ 𝐹 𝑛 ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
| 103 | 102 | eubidv | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ↔ ∃! 𝑛 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
| 104 | 47 103 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ) |
| 105 | 104 | ralrimiva | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ) |
| 106 | fnres | ⊢ ( ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) Fn ( 𝐴 ·o 𝐵 ) ↔ ∀ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ) | |
| 107 | 105 106 | sylibr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) Fn ( 𝐴 ·o 𝐵 ) ) |
| 108 | relcnv | ⊢ Rel ◡ 𝐹 | |
| 109 | df-rn | ⊢ ran 𝐹 = dom ◡ 𝐹 | |
| 110 | 30 | frnd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ran 𝐹 ⊆ ( 𝐴 ·o 𝐵 ) ) |
| 111 | 109 110 | eqsstrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → dom ◡ 𝐹 ⊆ ( 𝐴 ·o 𝐵 ) ) |
| 112 | relssres | ⊢ ( ( Rel ◡ 𝐹 ∧ dom ◡ 𝐹 ⊆ ( 𝐴 ·o 𝐵 ) ) → ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) = ◡ 𝐹 ) | |
| 113 | 108 111 112 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) = ◡ 𝐹 ) |
| 114 | 113 | fneq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) Fn ( 𝐴 ·o 𝐵 ) ↔ ◡ 𝐹 Fn ( 𝐴 ·o 𝐵 ) ) ) |
| 115 | 107 114 | mpbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ◡ 𝐹 Fn ( 𝐴 ·o 𝐵 ) ) |
| 116 | dff1o4 | ⊢ ( 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐹 Fn ( 𝐵 × 𝐴 ) ∧ ◡ 𝐹 Fn ( 𝐴 ·o 𝐵 ) ) ) | |
| 117 | 31 115 116 | sylanbrc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |