This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of TakeutiZaring p. 89. (Contributed by Mario Carneiro, 3-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omxpen | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ≈ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomeng | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) | |
| 2 | xpexg | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 × 𝐴 ) ∈ V ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 × 𝐴 ) ∈ V ) |
| 4 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) | |
| 6 | 5 | omxpenlem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |
| 7 | f1oen2g | ⊢ ( ( ( 𝐵 × 𝐴 ) ∈ V ∧ ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ·o 𝐵 ) ) | |
| 8 | 3 4 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ·o 𝐵 ) ) |
| 9 | entr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ·o 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ·o 𝐵 ) ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ·o 𝐵 ) ) |
| 11 | 10 | ensymd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ≈ ( 𝐴 × 𝐵 ) ) |