This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relssres | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↾ 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → Rel 𝐴 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | opeldm | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
| 5 | ssel | ⊢ ( dom 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 6 | 4 5 | syl5 | ⊢ ( dom 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 | 6 | ancrd | ⊢ ( dom 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
| 8 | 3 | opelresi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 9 | 7 8 | imbitrrdi | ⊢ ( dom 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ) ) |
| 11 | 1 10 | relssdv | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( 𝐴 ↾ 𝐵 ) ) |
| 12 | resss | ⊢ ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 | |
| 13 | 11 12 | jctil | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ↾ 𝐵 ) ) ) |
| 14 | eqss | ⊢ ( ( 𝐴 ↾ 𝐵 ) = 𝐴 ↔ ( ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ↾ 𝐵 ) ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↾ 𝐵 ) = 𝐴 ) |