This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x , y (in A X. B ) to C ( x , y ) ". An extension of df-mpt for two arguments. (Contributed by NM, 17-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | ⊢ 𝑥 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | cB | ⊢ 𝐵 | |
| 4 | cC | ⊢ 𝐶 | |
| 5 | 0 2 1 3 4 | cmpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 6 | vz | ⊢ 𝑧 | |
| 7 | 0 | cv | ⊢ 𝑥 |
| 8 | 7 1 | wcel | ⊢ 𝑥 ∈ 𝐴 |
| 9 | 2 | cv | ⊢ 𝑦 |
| 10 | 9 3 | wcel | ⊢ 𝑦 ∈ 𝐵 |
| 11 | 8 10 | wa | ⊢ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 12 | 6 | cv | ⊢ 𝑧 |
| 13 | 12 4 | wceq | ⊢ 𝑧 = 𝐶 |
| 14 | 11 13 | wa | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) |
| 15 | 14 0 2 6 | coprab | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| 16 | 5 15 | wceq | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |