This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A ( k ) is O(1), then sum_ k <_ x , A ( k ) is O( x ). (Contributed by Mario Carneiro, 23-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1fsum.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ 𝑉 ) | |
| o1fsum.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) ) | ||
| Assertion | o1fsum | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1fsum.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ 𝑉 ) | |
| 2 | o1fsum.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) ) | |
| 3 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ℕ ⊆ ℝ ) |
| 5 | 1 2 | o1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 6 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 7 | 4 5 6 | elo1mpt2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ( 1 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ) |
| 8 | 2 7 | mpbid | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 1 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) |
| 9 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 10 | 9 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ℝ+ ⊆ ℝ ) |
| 11 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝐴 = ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) | |
| 12 | nfcv | ⊢ Ⅎ 𝑛 𝐴 | |
| 13 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐴 | |
| 14 | 11 12 13 | cbvsum | ⊢ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 |
| 15 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) | |
| 16 | o1f | ⊢ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) ⟶ ℂ ) | |
| 17 | 2 16 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) ⟶ ℂ ) |
| 18 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑉 ) |
| 19 | dmmptg | ⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑉 → dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ℕ ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ℕ ) |
| 21 | 20 | feq2d | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) : dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) ⟶ ℂ ↔ ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ℂ ) ) |
| 22 | 17 21 | mpbid | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ℂ ) |
| 23 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ( 𝑘 ∈ ℕ ↦ 𝐴 ) | |
| 24 | 23 | fmpt | ⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ↔ ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ℂ ) |
| 25 | 22 24 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ) |
| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ) |
| 27 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) | |
| 28 | 13 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 29 | 11 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 30 | 28 29 | rspc | ⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 31 | 30 | impcom | ⊢ ( ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 32 | 26 27 31 | syl2an | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 33 | 15 32 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 34 | 14 33 | eqeltrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ∈ ℂ ) |
| 35 | rpcn | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) | |
| 36 | 35 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 37 | rpne0 | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) | |
| 38 | 37 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 39 | 34 36 38 | divcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ∈ ℂ ) |
| 40 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 𝑐 ∈ ( 1 [,) +∞ ) ) | |
| 41 | 1re | ⊢ 1 ∈ ℝ | |
| 42 | elicopnf | ⊢ ( 1 ∈ ℝ → ( 𝑐 ∈ ( 1 [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) ) ) | |
| 43 | 41 42 | ax-mp | ⊢ ( 𝑐 ∈ ( 1 [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) ) |
| 44 | 40 43 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) ) |
| 45 | 44 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 𝑐 ∈ ℝ ) |
| 46 | fzfid | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∈ Fin ) | |
| 47 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ) |
| 48 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) → 𝑛 ∈ ℕ ) | |
| 49 | 47 48 31 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 50 | 49 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 51 | 46 50 | fsumrecl | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 52 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 𝑚 ∈ ℝ ) | |
| 53 | 51 52 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ∈ ℝ ) |
| 54 | 34 36 38 | absdivd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / ( abs ‘ 𝑥 ) ) ) |
| 55 | 54 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / ( abs ‘ 𝑥 ) ) ) |
| 56 | rprege0 | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) | |
| 57 | 56 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 58 | absid | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( abs ‘ 𝑥 ) = 𝑥 ) | |
| 59 | 57 58 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 60 | 59 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / ( abs ‘ 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ) |
| 61 | 55 60 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ) |
| 62 | 34 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ∈ ℂ ) |
| 63 | 62 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ∈ ℝ ) |
| 64 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) | |
| 65 | 47 27 31 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 66 | 65 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 67 | 66 | abscld | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 68 | 64 67 | fsumrecl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 69 | 57 | simpld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 70 | 51 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 71 | 52 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑚 ∈ ℝ ) |
| 72 | 70 71 | readdcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ∈ ℝ ) |
| 73 | 69 72 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ∈ ℝ ) |
| 74 | 14 | fveq2i | ⊢ ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) = ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) |
| 75 | 64 66 | fsumabs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 76 | 74 75 | eqbrtrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 77 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) | |
| 78 | ssun2 | ⊢ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∪ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) | |
| 79 | flge1nn | ⊢ ( ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) → ( ⌊ ‘ 𝑐 ) ∈ ℕ ) | |
| 80 | 44 79 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ℕ ) |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ℕ ) |
| 82 | 81 | nnred | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ℝ ) |
| 83 | 45 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑐 ∈ ℝ ) |
| 84 | flle | ⊢ ( 𝑐 ∈ ℝ → ( ⌊ ‘ 𝑐 ) ≤ 𝑐 ) | |
| 85 | 83 84 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ≤ 𝑐 ) |
| 86 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑐 ≤ 𝑥 ) | |
| 87 | 82 83 69 85 86 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ≤ 𝑥 ) |
| 88 | fznnfl | ⊢ ( 𝑥 ∈ ℝ → ( ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( ( ⌊ ‘ 𝑐 ) ∈ ℕ ∧ ( ⌊ ‘ 𝑐 ) ≤ 𝑥 ) ) ) | |
| 89 | 69 88 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( ( ⌊ ‘ 𝑐 ) ∈ ℕ ∧ ( ⌊ ‘ 𝑐 ) ≤ 𝑥 ) ) ) |
| 90 | 81 87 89 | mpbir2and | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 91 | fzsplit | ⊢ ( ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∪ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) | |
| 92 | 90 91 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∪ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 93 | 78 92 | sseqtrrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 94 | 93 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 95 | 65 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 96 | 95 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 97 | 94 96 | syldan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 98 | 77 97 | fsumrecl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 99 | 69 70 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ∈ ℝ ) |
| 100 | 69 71 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · 𝑚 ) ∈ ℝ ) |
| 101 | 70 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 102 | 101 | mullidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 103 | 1red | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 1 ∈ ℝ ) | |
| 104 | 49 | absge0d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ) → 0 ≤ ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 105 | 46 50 104 | fsumge0 | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 106 | 51 105 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ∧ 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 107 | 106 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ∧ 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 108 | 44 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 1 ≤ 𝑐 ) |
| 109 | 108 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 1 ≤ 𝑐 ) |
| 110 | 103 83 69 109 86 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
| 111 | lemul1a | ⊢ ( ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ∧ 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) ∧ 1 ≤ 𝑥 ) → ( 1 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ≤ ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) | |
| 112 | 103 69 107 110 111 | syl31anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ≤ ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 113 | 102 112 | eqbrtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 114 | hashcl | ⊢ ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℕ0 ) | |
| 115 | nn0re | ⊢ ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℝ ) | |
| 116 | 77 114 115 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 117 | 116 71 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ∈ ℝ ) |
| 118 | 71 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ ) |
| 119 | elfzuz | ⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) | |
| 120 | 81 | peano2nnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℕ ) |
| 121 | eluznn | ⊢ ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) | |
| 122 | 120 121 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 123 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) | |
| 124 | 83 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑐 ∈ ℝ ) |
| 125 | reflcl | ⊢ ( 𝑐 ∈ ℝ → ( ⌊ ‘ 𝑐 ) ∈ ℝ ) | |
| 126 | peano2re | ⊢ ( ( ⌊ ‘ 𝑐 ) ∈ ℝ → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℝ ) | |
| 127 | 124 125 126 | 3syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℝ ) |
| 128 | 122 | nnred | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑛 ∈ ℝ ) |
| 129 | fllep1 | ⊢ ( 𝑐 ∈ ℝ → 𝑐 ≤ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) | |
| 130 | 124 129 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑐 ≤ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) |
| 131 | eluzle | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ≤ 𝑛 ) | |
| 132 | 131 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ≤ 𝑛 ) |
| 133 | 124 127 128 130 132 | letrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑐 ≤ 𝑛 ) |
| 134 | nfv | ⊢ Ⅎ 𝑘 𝑐 ≤ 𝑛 | |
| 135 | nfcv | ⊢ Ⅎ 𝑘 abs | |
| 136 | 135 13 | nffv | ⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) |
| 137 | nfcv | ⊢ Ⅎ 𝑘 ≤ | |
| 138 | nfcv | ⊢ Ⅎ 𝑘 𝑚 | |
| 139 | 136 137 138 | nfbr | ⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 |
| 140 | 134 139 | nfim | ⊢ Ⅎ 𝑘 ( 𝑐 ≤ 𝑛 → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) |
| 141 | breq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝑐 ≤ 𝑘 ↔ 𝑐 ≤ 𝑛 ) ) | |
| 142 | 11 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 143 | 142 | breq1d | ⊢ ( 𝑘 = 𝑛 → ( ( abs ‘ 𝐴 ) ≤ 𝑚 ↔ ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) ) |
| 144 | 141 143 | imbi12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ↔ ( 𝑐 ≤ 𝑛 → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) ) ) |
| 145 | 140 144 | rspc | ⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) → ( 𝑐 ≤ 𝑛 → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) ) ) |
| 146 | 122 123 133 145 | syl3c | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) |
| 147 | 119 146 | sylan2 | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) |
| 148 | 77 97 118 147 | fsumle | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 ) |
| 149 | 71 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑚 ∈ ℂ ) |
| 150 | fsumconst | ⊢ ( ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ 𝑚 ∈ ℂ ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 = ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ) | |
| 151 | 77 149 150 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 = ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ) |
| 152 | 148 151 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ) |
| 153 | biidd | ⊢ ( 𝑛 = ( ( ⌊ ‘ 𝑐 ) + 1 ) → ( 0 ≤ 𝑚 ↔ 0 ≤ 𝑚 ) ) | |
| 154 | 0red | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 0 ∈ ℝ ) | |
| 155 | 47 30 | mpan9 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 156 | 155 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ℕ ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 157 | 122 156 | syldan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 158 | 157 | abscld | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 159 | 71 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑚 ∈ ℝ ) |
| 160 | 157 | absge0d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 0 ≤ ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 161 | 154 158 159 160 146 | letrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 0 ≤ 𝑚 ) |
| 162 | 161 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) 0 ≤ 𝑚 ) |
| 163 | 120 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℤ ) |
| 164 | uzid | ⊢ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℤ → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) | |
| 165 | 163 164 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) |
| 166 | 153 162 165 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 0 ≤ 𝑚 ) |
| 167 | reflcl | ⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) | |
| 168 | 69 167 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 169 | ssdomg | ⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin → ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ≼ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) | |
| 170 | 64 93 169 | sylc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ≼ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 171 | hashdomi | ⊢ ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ≼ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) | |
| 172 | 170 171 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 173 | flge0nn0 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) | |
| 174 | hashfz1 | ⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) | |
| 175 | 57 173 174 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 176 | 172 175 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ ( ⌊ ‘ 𝑥 ) ) |
| 177 | flle | ⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) | |
| 178 | 69 177 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 179 | 116 168 69 176 178 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ 𝑥 ) |
| 180 | 116 69 71 166 179 | lemul1ad | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ≤ ( 𝑥 · 𝑚 ) ) |
| 181 | 98 117 100 152 180 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( 𝑥 · 𝑚 ) ) |
| 182 | 70 98 99 100 113 181 | le2addd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ≤ ( ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) + ( 𝑥 · 𝑚 ) ) ) |
| 183 | ltp1 | ⊢ ( ( ⌊ ‘ 𝑐 ) ∈ ℝ → ( ⌊ ‘ 𝑐 ) < ( ( ⌊ ‘ 𝑐 ) + 1 ) ) | |
| 184 | fzdisj | ⊢ ( ( ⌊ ‘ 𝑐 ) < ( ( ⌊ ‘ 𝑐 ) + 1 ) → ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∩ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) = ∅ ) | |
| 185 | 82 183 184 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∩ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) = ∅ ) |
| 186 | 96 | recnd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 187 | 185 92 64 186 | fsumsplit | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 188 | 36 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 189 | 188 101 149 | adddid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) = ( ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) + ( 𝑥 · 𝑚 ) ) ) |
| 190 | 182 187 189 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) |
| 191 | 63 68 73 76 190 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) |
| 192 | rpregt0 | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) | |
| 193 | 192 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 194 | ledivmul | ⊢ ( ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ∈ ℝ ∧ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ↔ ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) ) | |
| 195 | 63 72 193 194 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ↔ ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) ) |
| 196 | 191 195 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) |
| 197 | 61 196 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) |
| 198 | 10 39 45 53 197 | elo1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) |
| 199 | 198 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) ) |
| 200 | 199 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 1 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) ) |
| 201 | 8 200 | mpd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) |