This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqabs.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqabs.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| seqabs.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | seqabs | ⊢ ( 𝜑 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqabs.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqabs.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 3 | seqabs.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 4 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 5 | 4 2 | fsumabs | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 7 | 6 1 2 | fsumser | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 9 | abscl | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 11 | 2 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 12 | 3 1 11 | fsumser | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 13 | 5 8 12 | 3brtr3d | ⊢ ( 𝜑 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |