This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-strict order relation of the # function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdomi | ⊢ ( 𝐴 ≼ 𝐵 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ≼ 𝐵 ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) |
| 6 | hashdom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ V ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
| 8 | 1 7 | mpbird | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 9 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 10 | pnfge | ⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → +∞ ≤ +∞ ) |
| 12 | 3 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 13 | hashinf | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 15 | 4 | adantr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) |
| 16 | domfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ∈ Fin ) | |
| 17 | 16 | stoic1b | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐵 ∈ Fin ) |
| 18 | hashinf | ⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 20 | 11 14 19 | 3brtr4d | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 21 | 8 20 | pm2.61dan | ⊢ ( 𝐴 ≼ 𝐵 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |