This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of edges incident with a vertex N is the number of edges joining N with other vertices and the number of loops on N in a pseudograph of finite size. (Contributed by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edglnl.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| edglnl.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | numedglnl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edglnl.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | edglnl.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | diffi | ⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 6 | dmfi | ⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) | |
| 7 | rabfi | ⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
| 12 | notnotb | ⊢ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) | |
| 13 | notnotb | ⊢ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) | |
| 14 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 15 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 16 | 14 15 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun 𝐸 ) |
| 17 | 2 | iedgedg | ⊢ ( ( Fun 𝐸 ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 18 | 16 17 | sylan | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 19 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 20 | 1 19 | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) |
| 21 | 18 20 | syldan | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸 ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) |
| 22 | 21 | ex | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
| 26 | 25 | imp | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) |
| 27 | eldifsni | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ≠ 𝑁 ) | |
| 28 | eldifsni | ⊢ ( 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑤 ≠ 𝑁 ) | |
| 29 | 3elpr2eq | ⊢ ( ( ( 𝑁 ∈ { 𝑚 , 𝑛 } ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑤 ∈ { 𝑚 , 𝑛 } ) ∧ ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ) → 𝑣 = 𝑤 ) | |
| 30 | 29 | expcom | ⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( ( 𝑁 ∈ { 𝑚 , 𝑛 } ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑤 ∈ { 𝑚 , 𝑛 } ) → 𝑣 = 𝑤 ) ) |
| 31 | 30 | 3expd | ⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ( 𝑤 ∈ { 𝑚 , 𝑛 } → 𝑣 = 𝑤 ) ) ) ) |
| 32 | 31 | com23 | ⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑤 ∈ { 𝑚 , 𝑛 } → 𝑣 = 𝑤 ) ) ) ) |
| 33 | 32 | 3imp | ⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑁 ∈ { 𝑚 , 𝑛 } ) → ( 𝑤 ∈ { 𝑚 , 𝑛 } → 𝑣 = 𝑤 ) ) |
| 34 | 33 | con3d | ⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑁 ∈ { 𝑚 , 𝑛 } ) → ( ¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) |
| 35 | 34 | 3exp | ⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( ¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) ) |
| 36 | 35 | com24 | ⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( ¬ 𝑣 = 𝑤 → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) ) |
| 37 | 36 | imp | ⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) |
| 38 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ { 𝑚 , 𝑛 } ) ) | |
| 39 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑣 ∈ { 𝑚 , 𝑛 } ) ) | |
| 40 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) | |
| 41 | 40 | notbid | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) |
| 42 | 39 41 | imbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) |
| 43 | 38 42 | imbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) ) |
| 44 | 37 43 | syl5ibrcom | ⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) → ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 46 | 45 | rexlimdvva | ⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 47 | 46 | ex | ⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( ¬ 𝑣 = 𝑤 → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 48 | 27 28 47 | syl2an | ⊢ ( ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ¬ 𝑣 = 𝑤 → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 49 | 48 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( ¬ 𝑣 = 𝑤 → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 50 | 49 | imp | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 52 | 26 51 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 53 | 52 | imp | ⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 54 | 13 53 | biimtrrid | ⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) → ( ¬ ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 55 | 54 | orrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 56 | 55 | ex | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 57 | 12 56 | biimtrrid | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ¬ ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 58 | 57 | orrd | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 59 | anandi | ⊢ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) | |
| 60 | 59 | bicomi | ⊢ ( ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 61 | 60 | notbii | ⊢ ( ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ¬ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 62 | ianor | ⊢ ( ¬ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) | |
| 63 | ianor | ⊢ ( ¬ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) | |
| 64 | 63 | orbi2i | ⊢ ( ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 65 | 61 62 64 | 3bitri | ⊢ ( ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 66 | 58 65 | sylibr | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ∀ 𝑖 ∈ dom 𝐸 ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 68 | inrab | ⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = { 𝑖 ∈ dom 𝐸 ∣ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) } | |
| 69 | 68 | eqeq1i | ⊢ ( ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ↔ { 𝑖 ∈ dom 𝐸 ∣ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) } = ∅ ) |
| 70 | rabeq0 | ⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) } = ∅ ↔ ∀ 𝑖 ∈ dom 𝐸 ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) | |
| 71 | 69 70 | bitri | ⊢ ( ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ↔ ∀ 𝑖 ∈ dom 𝐸 ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 72 | 67 71 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) |
| 73 | 72 | ex | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( ¬ 𝑣 = 𝑤 → ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
| 74 | 73 | orrd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( 𝑣 = 𝑤 ∨ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
| 75 | 74 | ralrimivva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑣 = 𝑤 ∨ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
| 76 | eleq1w | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) | |
| 77 | 76 | anbi2d | ⊢ ( 𝑣 = 𝑤 → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 78 | 77 | rabbidv | ⊢ ( 𝑣 = 𝑤 → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } = { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 79 | 78 | disjor | ⊢ ( Disj 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑣 = 𝑤 ∨ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
| 80 | 75 79 | sylibr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → Disj 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 81 | 5 11 80 | hashiun | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
| 82 | 81 | eqcomd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
| 83 | 82 | oveq1d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
| 84 | 11 | ralrimiva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
| 85 | iunfi | ⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ∧ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) → ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) | |
| 86 | 5 84 85 | syl2anc | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
| 87 | rabfi | ⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) | |
| 88 | 6 87 | syl | ⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
| 89 | 88 | adantl | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
| 90 | 89 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
| 91 | fveqeq2 | ⊢ ( 𝑖 = 𝑗 → ( ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ↔ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) | |
| 92 | 91 | elrab | ⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ↔ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) |
| 93 | eldifn | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ { 𝑁 } ) | |
| 94 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑗 ) = { 𝑁 } → ( 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ↔ 𝑣 ∈ { 𝑁 } ) ) | |
| 95 | 94 | notbid | ⊢ ( ( 𝐸 ‘ 𝑗 ) = { 𝑁 } → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ↔ ¬ 𝑣 ∈ { 𝑁 } ) ) |
| 96 | 93 95 | imbitrrid | ⊢ ( ( 𝐸 ‘ 𝑗 ) = { 𝑁 } → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
| 97 | 96 | adantl | ⊢ ( ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
| 98 | 97 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
| 99 | 98 | imp | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) |
| 100 | 99 | intnand | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
| 101 | 100 | intnand | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 102 | 101 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 103 | eliun | ⊢ ( 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) | |
| 104 | 103 | notbii | ⊢ ( ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ¬ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 105 | ralnex | ⊢ ( ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ¬ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) | |
| 106 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) ) | |
| 107 | 106 | eleq2d | ⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
| 108 | 106 | eleq2d | ⊢ ( 𝑖 = 𝑗 → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
| 109 | 107 108 | anbi12d | ⊢ ( 𝑖 = 𝑗 → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 110 | 109 | elrab | ⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 111 | 110 | notbii | ⊢ ( ¬ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 112 | 111 | ralbii | ⊢ ( ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 113 | 104 105 112 | 3bitr2i | ⊢ ( ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
| 114 | 102 113 | sylibr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) → ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 115 | 114 | ex | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) → ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
| 116 | 92 115 | biimtrid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } → ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
| 117 | 116 | ralrimiv | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 118 | disjr | ⊢ ( ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ∅ ↔ ∀ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) | |
| 119 | 117 118 | sylibr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ∅ ) |
| 120 | hashun | ⊢ ( ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ∧ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ∧ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ∅ ) → ( ♯ ‘ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) | |
| 121 | 86 90 119 120 | syl3anc | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
| 122 | 1 2 | edglnl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
| 123 | 122 | 3adant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
| 124 | 123 | fveq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
| 125 | 83 121 124 | 3eqtr2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |