This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020) (Proof shortened by AV, 26-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝐺 ∈ UPGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 7 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 8 | 1 7 | upgrf | ⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 9 | 8 | frnd | ⊢ ( 𝐺 ∈ UPGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 10 | 9 | sseld | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐶 ∈ ran ( iEdg ‘ 𝐺 ) → 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 11 | 6 10 | sylbid | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐶 ∈ 𝐸 → 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐶 ) ) | |
| 14 | 13 | breq1d | ⊢ ( 𝑥 = 𝐶 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝐶 ) ≤ 2 ) ) |
| 15 | 14 | elrab | ⊢ ( 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐶 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐶 ) ≤ 2 ) ) |
| 16 | hashle2prv | ⊢ ( 𝐶 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝐶 ) ≤ 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( 𝐶 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐶 ) ≤ 2 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
| 18 | 15 17 | sylbi | ⊢ ( 𝐶 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |
| 19 | 12 18 | syl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝑎 , 𝑏 } ) |