This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv resp. umgrnloop . (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgredgne.v | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | umgredgne | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀 ≠ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgredgne.v | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | 1 | eleq2i | ⊢ ( { 𝑀 , 𝑁 } ∈ 𝐸 ↔ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) |
| 3 | edgumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) | |
| 4 | 2 3 | sylan2b | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 5 | eqid | ⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } | |
| 6 | 5 | hashprdifel | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
| 7 | 6 | simp3d | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → 𝑀 ≠ 𝑁 ) |
| 8 | 4 7 | simpl2im | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀 ≠ 𝑁 ) |