This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edges incident with a vertex N are the edges joining N with other vertices and the loops on N in a pseudograph. (Contributed by AV, 18-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edglnl.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| edglnl.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | edglnl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edglnl.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | edglnl.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | iunrab | ⊢ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } = { 𝑖 ∈ dom 𝐸 ∣ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } | |
| 4 | 3 | a1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } = { 𝑖 ∈ dom 𝐸 ∣ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 5 | 4 | uneq1d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ( { 𝑖 ∈ dom 𝐸 ∣ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) |
| 6 | unrab | ⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) } | |
| 7 | simpl | ⊢ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) → 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) | |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) → 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) |
| 9 | 8 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) → 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 10 | snidg | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ { 𝑁 } ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → 𝑁 ∈ { 𝑁 } ) |
| 12 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑁 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ { 𝑁 } ) ) | |
| 13 | 11 12 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑖 ) = { 𝑁 } → 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 14 | 9 13 | jaod | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) → 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 15 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 16 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 17 | 15 16 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun 𝐸 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → Fun 𝐸 ) |
| 19 | 2 | iedgedg | ⊢ ( ( Fun 𝐸 ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 20 | 18 19 | sylan | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 21 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 22 | 1 21 | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑛 ∈ 𝑉 ∃ 𝑚 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } ) |
| 23 | 22 | ex | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑛 ∈ 𝑉 ∃ 𝑚 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑛 ∈ 𝑉 ∃ 𝑚 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } ) ) |
| 25 | dfsn2 | ⊢ { 𝑛 } = { 𝑛 , 𝑛 } | |
| 26 | 25 | eqcomi | ⊢ { 𝑛 , 𝑛 } = { 𝑛 } |
| 27 | elsni | ⊢ ( 𝑁 ∈ { 𝑛 } → 𝑁 = 𝑛 ) | |
| 28 | sneq | ⊢ ( 𝑁 = 𝑛 → { 𝑁 } = { 𝑛 } ) | |
| 29 | 28 | eqcomd | ⊢ ( 𝑁 = 𝑛 → { 𝑛 } = { 𝑁 } ) |
| 30 | 27 29 | syl | ⊢ ( 𝑁 ∈ { 𝑛 } → { 𝑛 } = { 𝑁 } ) |
| 31 | 26 30 | eqtrid | ⊢ ( 𝑁 ∈ { 𝑛 } → { 𝑛 , 𝑛 } = { 𝑁 } ) |
| 32 | 31 26 | eleq2s | ⊢ ( 𝑁 ∈ { 𝑛 , 𝑛 } → { 𝑛 , 𝑛 } = { 𝑁 } ) |
| 33 | preq2 | ⊢ ( 𝑚 = 𝑛 → { 𝑛 , 𝑚 } = { 𝑛 , 𝑛 } ) | |
| 34 | 33 | eleq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑁 ∈ { 𝑛 , 𝑚 } ↔ 𝑁 ∈ { 𝑛 , 𝑛 } ) ) |
| 35 | 33 | eqeq1d | ⊢ ( 𝑚 = 𝑛 → ( { 𝑛 , 𝑚 } = { 𝑁 } ↔ { 𝑛 , 𝑛 } = { 𝑁 } ) ) |
| 36 | 34 35 | imbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑁 ∈ { 𝑛 , 𝑚 } → { 𝑛 , 𝑚 } = { 𝑁 } ) ↔ ( 𝑁 ∈ { 𝑛 , 𝑛 } → { 𝑛 , 𝑛 } = { 𝑁 } ) ) ) |
| 37 | 32 36 | mpbiri | ⊢ ( 𝑚 = 𝑛 → ( 𝑁 ∈ { 𝑛 , 𝑚 } → { 𝑛 , 𝑚 } = { 𝑁 } ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) → { 𝑛 , 𝑚 } = { 𝑁 } ) |
| 39 | 38 | olcd | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) |
| 40 | 39 | expcom | ⊢ ( 𝑁 ∈ { 𝑛 , 𝑚 } → ( 𝑚 = 𝑛 → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) |
| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) → ( 𝑚 = 𝑛 → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) |
| 42 | 41 | com12 | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) |
| 43 | simpr3 | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → 𝑁 ∈ { 𝑛 , 𝑚 } ) | |
| 44 | simpl | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → 𝑚 ≠ 𝑛 ) | |
| 45 | 44 | necomd | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → 𝑛 ≠ 𝑚 ) |
| 46 | simpr2 | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ) | |
| 47 | prproe | ⊢ ( ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑛 ≠ 𝑚 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ { 𝑛 , 𝑚 } ) | |
| 48 | 43 45 46 47 | syl3anc | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ { 𝑛 , 𝑚 } ) |
| 49 | r19.42v | ⊢ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ↔ ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ { 𝑛 , 𝑚 } ) ) | |
| 50 | 43 48 49 | sylanbrc | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ) |
| 51 | 50 | orcd | ⊢ ( ( 𝑚 ≠ 𝑛 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) |
| 52 | 51 | ex | ⊢ ( 𝑚 ≠ 𝑛 → ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) |
| 53 | 42 52 | pm2.61ine | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑁 ∈ { 𝑛 , 𝑚 } ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) |
| 54 | 53 | 3exp | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) → ( 𝑁 ∈ { 𝑛 , 𝑚 } → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) ) |
| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) → ( 𝑁 ∈ { 𝑛 , 𝑚 } → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) ) |
| 56 | 55 | imp | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ) → ( 𝑁 ∈ { 𝑛 , 𝑚 } → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) |
| 57 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ { 𝑛 , 𝑚 } ) ) | |
| 58 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑣 ∈ { 𝑛 , 𝑚 } ) ) | |
| 59 | 57 58 | anbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ) ) |
| 60 | 59 | rexbidv | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ) ) |
| 61 | eqeq1 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ↔ { 𝑛 , 𝑚 } = { 𝑁 } ) ) | |
| 62 | 60 61 | orbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ↔ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) |
| 63 | 57 62 | imbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ) ↔ ( 𝑁 ∈ { 𝑛 , 𝑚 } → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ { 𝑛 , 𝑚 } ∧ 𝑣 ∈ { 𝑛 , 𝑚 } ) ∨ { 𝑛 , 𝑚 } = { 𝑁 } ) ) ) ) |
| 64 | 56 63 | syl5ibrcom | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ) ) → ( ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ) ) ) |
| 65 | 64 | rexlimdvva | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ∃ 𝑛 ∈ 𝑉 ∃ 𝑚 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑛 , 𝑚 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ) ) ) |
| 66 | 24 65 | syld | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ) ) ) |
| 67 | 20 66 | mpd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ) ) |
| 68 | 14 67 | impbid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 69 | 68 | rabbidva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑖 ∈ dom 𝐸 ∣ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∨ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ) } = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
| 70 | 6 69 | eqtrid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑖 ∈ dom 𝐸 ∣ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
| 71 | 5 70 | eqtrd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |