This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgrfun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrfun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 1 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 4 | 3 | ffund | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |