This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3elpr2eq | ⊢ ( ( ( 𝑋 ∈ { 𝐴 , 𝐵 } ∧ 𝑌 ∈ { 𝐴 , 𝐵 } ∧ 𝑍 ∈ { 𝐴 , 𝐵 } ) ∧ ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) ) → 𝑌 = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝑋 ∈ { 𝐴 , 𝐵 } → ( 𝑋 = 𝐴 ∨ 𝑋 = 𝐵 ) ) | |
| 2 | elpri | ⊢ ( 𝑌 ∈ { 𝐴 , 𝐵 } → ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) ) | |
| 3 | elpri | ⊢ ( 𝑍 ∈ { 𝐴 , 𝐵 } → ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) ) | |
| 4 | eqtr3 | ⊢ ( ( 𝑍 = 𝐴 ∧ 𝑋 = 𝐴 ) → 𝑍 = 𝑋 ) | |
| 5 | eqneqall | ⊢ ( 𝑍 = 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑍 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) |
| 7 | 6 | adantld | ⊢ ( ( 𝑍 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
| 8 | 7 | ex | ⊢ ( 𝑍 = 𝐴 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
| 9 | 8 | a1d | ⊢ ( 𝑍 = 𝐴 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 10 | eqtr3 | ⊢ ( ( 𝑌 = 𝐴 ∧ 𝑋 = 𝐴 ) → 𝑌 = 𝑋 ) | |
| 11 | eqneqall | ⊢ ( 𝑌 = 𝑋 → ( 𝑌 ≠ 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑌 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( 𝑌 ≠ 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) ) |
| 13 | 12 | impd | ⊢ ( ( 𝑌 = 𝐴 ∧ 𝑋 = 𝐴 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
| 14 | 13 | ex | ⊢ ( 𝑌 = 𝐴 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
| 15 | 14 | a1d | ⊢ ( 𝑌 = 𝐴 → ( 𝑍 = 𝐵 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 16 | eqtr3 | ⊢ ( ( 𝑌 = 𝐵 ∧ 𝑍 = 𝐵 ) → 𝑌 = 𝑍 ) | |
| 17 | 16 | 2a1d | ⊢ ( ( 𝑌 = 𝐵 ∧ 𝑍 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
| 18 | 17 | ex | ⊢ ( 𝑌 = 𝐵 → ( 𝑍 = 𝐵 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 19 | 15 18 | jaoi | ⊢ ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑍 = 𝐵 → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 20 | 19 | com12 | ⊢ ( 𝑍 = 𝐵 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 21 | 9 20 | jaoi | ⊢ ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐴 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 22 | 21 | com13 | ⊢ ( 𝑋 = 𝐴 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 23 | eqtr3 | ⊢ ( ( 𝑌 = 𝐴 ∧ 𝑍 = 𝐴 ) → 𝑌 = 𝑍 ) | |
| 24 | 23 | 2a1d | ⊢ ( ( 𝑌 = 𝐴 ∧ 𝑍 = 𝐴 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
| 25 | 24 | ex | ⊢ ( 𝑌 = 𝐴 → ( 𝑍 = 𝐴 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 26 | eqtr3 | ⊢ ( ( 𝑌 = 𝐵 ∧ 𝑋 = 𝐵 ) → 𝑌 = 𝑋 ) | |
| 27 | 26 11 | syl | ⊢ ( ( 𝑌 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( 𝑌 ≠ 𝑋 → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) ) |
| 28 | 27 | impd | ⊢ ( ( 𝑌 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
| 29 | 28 | ex | ⊢ ( 𝑌 = 𝐵 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
| 30 | 29 | a1d | ⊢ ( 𝑌 = 𝐵 → ( 𝑍 = 𝐴 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 31 | 25 30 | jaoi | ⊢ ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑍 = 𝐴 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 32 | 31 | com12 | ⊢ ( 𝑍 = 𝐴 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 33 | eqtr3 | ⊢ ( ( 𝑍 = 𝐵 ∧ 𝑋 = 𝐵 ) → 𝑍 = 𝑋 ) | |
| 34 | 33 5 | syl | ⊢ ( ( 𝑍 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( 𝑍 ≠ 𝑋 → 𝑌 = 𝑍 ) ) |
| 35 | 34 | adantld | ⊢ ( ( 𝑍 = 𝐵 ∧ 𝑋 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
| 36 | 35 | ex | ⊢ ( 𝑍 = 𝐵 → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) |
| 37 | 36 | a1d | ⊢ ( 𝑍 = 𝐵 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 38 | 32 37 | jaoi | ⊢ ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( 𝑋 = 𝐵 → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 39 | 38 | com13 | ⊢ ( 𝑋 = 𝐵 → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 40 | 22 39 | jaoi | ⊢ ( ( 𝑋 = 𝐴 ∨ 𝑋 = 𝐵 ) → ( ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) → ( ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) ) ) |
| 41 | 40 | 3imp | ⊢ ( ( ( 𝑋 = 𝐴 ∨ 𝑋 = 𝐵 ) ∧ ( 𝑌 = 𝐴 ∨ 𝑌 = 𝐵 ) ∧ ( 𝑍 = 𝐴 ∨ 𝑍 = 𝐵 ) ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
| 42 | 1 2 3 41 | syl3an | ⊢ ( ( 𝑋 ∈ { 𝐴 , 𝐵 } ∧ 𝑌 ∈ { 𝐴 , 𝐵 } ∧ 𝑍 ∈ { 𝐴 , 𝐵 } ) → ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) → 𝑌 = 𝑍 ) ) |
| 43 | 42 | imp | ⊢ ( ( ( 𝑋 ∈ { 𝐴 , 𝐵 } ∧ 𝑌 ∈ { 𝐴 , 𝐵 } ∧ 𝑍 ∈ { 𝐴 , 𝐵 } ) ∧ ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) ) → 𝑌 = 𝑍 ) |