This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique element of Q. equivalent to each element of N. X. N. . (Contributed by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqereu | ⊢ ( 𝐴 ∈ ( N × N ) → ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 | ⊢ ( 𝐴 ∈ ( N × N ) ↔ ∃ 𝑎 ∈ N ∃ 𝑏 ∈ N 𝐴 = 〈 𝑎 , 𝑏 〉 ) | |
| 2 | pion | ⊢ ( 𝑏 ∈ N → 𝑏 ∈ On ) | |
| 3 | onsuc | ⊢ ( 𝑏 ∈ On → suc 𝑏 ∈ On ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑏 ∈ N → suc 𝑏 ∈ On ) |
| 5 | vex | ⊢ 𝑏 ∈ V | |
| 6 | 5 | sucid | ⊢ 𝑏 ∈ suc 𝑏 |
| 7 | eleq2 | ⊢ ( 𝑦 = suc 𝑏 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ suc 𝑏 ) ) | |
| 8 | 7 | rspcev | ⊢ ( ( suc 𝑏 ∈ On ∧ 𝑏 ∈ suc 𝑏 ) → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
| 9 | 4 6 8 | sylancl | ⊢ ( 𝑏 ∈ N → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
| 11 | elequ2 | ⊢ ( 𝑦 = 𝑚 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑚 ) ) | |
| 12 | 11 | imbi1d | ⊢ ( 𝑦 = 𝑚 → ( ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 13 | 12 | 2ralbidv | ⊢ ( 𝑦 = 𝑚 → ( ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ↔ ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 14 | opeq1 | ⊢ ( 𝑐 = 𝑎 → 〈 𝑐 , 𝑑 〉 = 〈 𝑎 , 𝑑 〉 ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑐 = 𝑎 → ( 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) ) |
| 18 | elequ1 | ⊢ ( 𝑑 = 𝑏 → ( 𝑑 ∈ 𝑚 ↔ 𝑏 ∈ 𝑚 ) ) | |
| 19 | opeq2 | ⊢ ( 𝑑 = 𝑏 → 〈 𝑎 , 𝑑 〉 = 〈 𝑎 , 𝑏 〉 ) | |
| 20 | 19 | breq2d | ⊢ ( 𝑑 = 𝑏 → ( 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ↔ 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 21 | 20 | rexbidv | ⊢ ( 𝑑 = 𝑏 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑑 = 𝑏 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ↔ ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 23 | 17 22 | cbvral2vw | ⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 24 | 23 | ralbii | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 25 | rexnal | ⊢ ( ∃ 𝑧 ∈ ( N × N ) ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) | |
| 26 | pm4.63 | ⊢ ( ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) | |
| 27 | xp2nd | ⊢ ( 𝑧 ∈ ( N × N ) → ( 2nd ‘ 𝑧 ) ∈ N ) | |
| 28 | ltpiord | ⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ N ∧ 𝑏 ∈ N ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) | |
| 29 | 28 | ancoms | ⊢ ( ( 𝑏 ∈ N ∧ ( 2nd ‘ 𝑧 ) ∈ N ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 30 | 27 29 | sylan2 | ⊢ ( ( 𝑏 ∈ N ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 31 | 30 | adantll | ⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 32 | 31 | anbi2d | ⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 33 | 26 32 | bitrid | ⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 34 | 33 | rexbidva | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∃ 𝑧 ∈ ( N × N ) ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 35 | 25 34 | bitr3id | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 36 | xp1st | ⊢ ( 𝑧 ∈ ( N × N ) → ( 1st ‘ 𝑧 ) ∈ N ) | |
| 37 | elequ2 | ⊢ ( 𝑚 = 𝑏 → ( 𝑑 ∈ 𝑚 ↔ 𝑑 ∈ 𝑏 ) ) | |
| 38 | 37 | imbi1d | ⊢ ( 𝑚 = 𝑏 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
| 39 | 38 | 2ralbidv | ⊢ ( 𝑚 = 𝑏 → ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
| 40 | 39 | rspccv | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
| 41 | opeq1 | ⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → 〈 𝑐 , 𝑑 〉 = 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) | |
| 42 | 41 | breq2d | ⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) |
| 43 | 42 | rexbidv | ⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
| 46 | 45 | rspccv | ⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
| 47 | eleq1 | ⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( 𝑑 ∈ 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) | |
| 48 | opeq2 | ⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 49 | 48 | breq2d | ⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 50 | 49 | rexbidv | ⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 51 | 47 50 | imbi12d | ⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ↔ ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
| 52 | 51 | rspccv | ⊢ ( ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
| 53 | 46 52 | syl6 | ⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
| 54 | 40 53 | syl6 | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) ) |
| 55 | 54 | imp | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
| 56 | 36 55 | syl5 | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
| 57 | 27 56 | mpdi | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
| 58 | 57 | 3imp | ⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 59 | 1st2nd2 | ⊢ ( 𝑧 ∈ ( N × N ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 60 | 59 | breq2d | ⊢ ( 𝑧 ∈ ( N × N ) → ( 𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 61 | 60 | rexbidv | ⊢ ( 𝑧 ∈ ( N × N ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 62 | 61 | 3ad2ant2 | ⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 63 | 58 62 | mpbird | ⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ) |
| 64 | enqer | ⊢ ~Q Er ( N × N ) | |
| 65 | 64 | a1i | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → ~Q Er ( N × N ) ) |
| 66 | simpr | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 𝑥 ~Q 𝑧 ) | |
| 67 | simpl | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ) | |
| 68 | 65 66 67 | ertr4d | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 69 | 68 | ex | ⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ( 𝑥 ~Q 𝑧 → 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 70 | 69 | reximdv | ⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 71 | 63 70 | syl5com | ⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 72 | 71 | 3expia | ⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 73 | 72 | impcomd | ⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 74 | 73 | rexlimdva | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 75 | 74 | ex | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 76 | 75 | com3r | ⊢ ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 77 | 35 76 | biimtrdi | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 78 | 77 | com13 | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 79 | mulcompi | ⊢ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) | |
| 80 | enqbreq | ⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ) → ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) ) | |
| 81 | 80 | anidms | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) ) |
| 82 | 79 81 | mpbiri | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 83 | opelxpi | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) ) | |
| 84 | breq1 | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ~Q 𝑧 ↔ 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ) ) | |
| 85 | vex | ⊢ 𝑎 ∈ V | |
| 86 | 85 5 | op2ndd | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑦 ) = 𝑏 ) |
| 87 | 86 | breq2d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
| 88 | 87 | notbid | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
| 89 | 84 88 | imbi12d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
| 90 | 89 | ralbidv | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
| 91 | df-nq | ⊢ Q = { 𝑦 ∈ ( N × N ) ∣ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) } | |
| 92 | 90 91 | elrab2 | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ Q ↔ ( 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
| 93 | 92 | simplbi2 | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ Q ) ) |
| 94 | 83 93 | syl | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ Q ) ) |
| 95 | breq1 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) ) | |
| 96 | 95 | rspcev | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ Q ∧ 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 97 | 96 | expcom | ⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 → ( 〈 𝑎 , 𝑏 〉 ∈ Q → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 98 | 82 94 97 | sylsyld | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 99 | 98 | com12 | ⊢ ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 100 | 99 | a1dd | ⊢ ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 101 | 78 100 | pm2.61d2 | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 102 | 101 | ralrimivv | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 103 | 24 102 | sylbir | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 104 | 103 | a1i | ⊢ ( 𝑦 ∈ On → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 105 | 13 104 | tfis2 | ⊢ ( 𝑦 ∈ On → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 106 | rsp | ⊢ ( ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ( 𝑎 ∈ N → ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) | |
| 107 | 105 106 | syl | ⊢ ( 𝑦 ∈ On → ( 𝑎 ∈ N → ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 108 | rsp | ⊢ ( ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ( 𝑏 ∈ N → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) | |
| 109 | 107 108 | syl6 | ⊢ ( 𝑦 ∈ On → ( 𝑎 ∈ N → ( 𝑏 ∈ N → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 110 | 109 | impd | ⊢ ( 𝑦 ∈ On → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 111 | 110 | com12 | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑦 ∈ On → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 112 | 111 | rexlimdv | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 113 | 10 112 | mpd | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 114 | breq2 | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ~Q 𝐴 ↔ 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) | |
| 115 | 114 | rexbidv | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 116 | 113 115 | syl5ibrcom | ⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) ) |
| 117 | 116 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ N ∃ 𝑏 ∈ N 𝐴 = 〈 𝑎 , 𝑏 〉 → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
| 118 | 1 117 | sylbi | ⊢ ( 𝐴 ∈ ( N × N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
| 119 | breq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑥 ~Q 𝑎 ↔ 𝑥 ~Q 𝐴 ) ) | |
| 120 | breq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑦 ~Q 𝑎 ↔ 𝑦 ~Q 𝐴 ) ) | |
| 121 | 119 120 | anbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) ↔ ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) ) ) |
| 122 | 121 | imbi1d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 123 | 122 | 2ralbidv | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 124 | 64 | a1i | ⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → ~Q Er ( N × N ) ) |
| 125 | simpl | ⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑎 ) | |
| 126 | simpr | ⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑦 ~Q 𝑎 ) | |
| 127 | 124 125 126 | ertr4d | ⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑦 ) |
| 128 | mulcompi | ⊢ ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑥 ) ) | |
| 129 | elpqn | ⊢ ( 𝑦 ∈ Q → 𝑦 ∈ ( N × N ) ) | |
| 130 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ~Q 𝑧 ↔ 𝑥 ~Q 𝑧 ) ) | |
| 131 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑥 ) ) | |
| 132 | 131 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 133 | 132 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 134 | 130 133 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 135 | 134 | ralbidv | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 136 | 135 91 | elrab2 | ⊢ ( 𝑥 ∈ Q ↔ ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 137 | 136 | simprbi | ⊢ ( 𝑥 ∈ Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 138 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 𝑦 ) ) | |
| 139 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑦 ) ) | |
| 140 | 139 | breq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ↔ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 141 | 140 | notbid | ⊢ ( 𝑧 = 𝑦 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ↔ ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 142 | 138 141 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 143 | 142 | rspcva | ⊢ ( ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 144 | 129 137 143 | syl2anr | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 145 | 144 | imp | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) |
| 146 | elpqn | ⊢ ( 𝑥 ∈ Q → 𝑥 ∈ ( N × N ) ) | |
| 147 | 91 | reqabi | ⊢ ( 𝑦 ∈ Q ↔ ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) ) |
| 148 | 147 | simprbi | ⊢ ( 𝑦 ∈ Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 149 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ~Q 𝑧 ↔ 𝑦 ~Q 𝑥 ) ) | |
| 150 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑥 ) ) | |
| 151 | 150 | breq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 152 | 151 | notbid | ⊢ ( 𝑧 = 𝑥 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 153 | 149 152 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) ) |
| 154 | 153 | rspcva | ⊢ ( ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 155 | 146 148 154 | syl2an | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 156 | 64 | a1i | ⊢ ( 𝑥 ~Q 𝑦 → ~Q Er ( N × N ) ) |
| 157 | id | ⊢ ( 𝑥 ~Q 𝑦 → 𝑥 ~Q 𝑦 ) | |
| 158 | 156 157 | ersym | ⊢ ( 𝑥 ~Q 𝑦 → 𝑦 ~Q 𝑥 ) |
| 159 | 155 158 | impel | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) |
| 160 | xp2nd | ⊢ ( 𝑥 ∈ ( N × N ) → ( 2nd ‘ 𝑥 ) ∈ N ) | |
| 161 | 146 160 | syl | ⊢ ( 𝑥 ∈ Q → ( 2nd ‘ 𝑥 ) ∈ N ) |
| 162 | 161 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑥 ) ∈ N ) |
| 163 | xp2nd | ⊢ ( 𝑦 ∈ ( N × N ) → ( 2nd ‘ 𝑦 ) ∈ N ) | |
| 164 | 129 163 | syl | ⊢ ( 𝑦 ∈ Q → ( 2nd ‘ 𝑦 ) ∈ N ) |
| 165 | 164 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑦 ) ∈ N ) |
| 166 | ltsopi | ⊢ <N Or N | |
| 167 | sotric | ⊢ ( ( <N Or N ∧ ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) → ( ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) | |
| 168 | 166 167 | mpan | ⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 169 | 168 | notbid | ⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 170 | notnotb | ⊢ ( ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ¬ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) | |
| 171 | 169 170 | bitr4di | ⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 172 | 162 165 171 | syl2anc | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 173 | 159 172 | mpbid | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 174 | 173 | ord | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) → ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 175 | 145 174 | mt3d | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) |
| 176 | 175 | oveq2d | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) ) |
| 177 | 128 176 | eqtrid | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) ) |
| 178 | 1st2nd2 | ⊢ ( 𝑥 ∈ ( N × N ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) | |
| 179 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( N × N ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 180 | 178 179 | breqan12d | ⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) ) |
| 181 | xp1st | ⊢ ( 𝑥 ∈ ( N × N ) → ( 1st ‘ 𝑥 ) ∈ N ) | |
| 182 | 181 160 | jca | ⊢ ( 𝑥 ∈ ( N × N ) → ( ( 1st ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑥 ) ∈ N ) ) |
| 183 | xp1st | ⊢ ( 𝑦 ∈ ( N × N ) → ( 1st ‘ 𝑦 ) ∈ N ) | |
| 184 | 183 163 | jca | ⊢ ( 𝑦 ∈ ( N × N ) → ( ( 1st ‘ 𝑦 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) |
| 185 | enqbreq | ⊢ ( ( ( ( 1st ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑥 ) ∈ N ) ∧ ( ( 1st ‘ 𝑦 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) → ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) | |
| 186 | 182 184 185 | syl2an | ⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 187 | 180 186 | bitrd | ⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 188 | 146 129 187 | syl2an | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 189 | 188 | biimpa | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) |
| 190 | 177 189 | eqtrd | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) |
| 191 | 146 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 ∈ ( N × N ) ) |
| 192 | mulcanpi | ⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 1st ‘ 𝑥 ) ∈ N ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) | |
| 193 | 160 181 192 | syl2anc | ⊢ ( 𝑥 ∈ ( N × N ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
| 194 | 191 193 | syl | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
| 195 | 190 194 | mpbid | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) |
| 196 | 195 175 | opeq12d | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 197 | 191 178 | syl | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 198 | 129 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 ∈ ( N × N ) ) |
| 199 | 198 179 | syl | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 200 | 196 197 199 | 3eqtr4d | ⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 𝑦 ) |
| 201 | 200 | ex | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 → 𝑥 = 𝑦 ) ) |
| 202 | 127 201 | syl5 | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ) |
| 203 | 202 | rgen2 | ⊢ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) |
| 204 | 123 203 | vtoclg | ⊢ ( 𝐴 ∈ ( N × N ) → ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 205 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ~Q 𝐴 ↔ 𝑦 ~Q 𝐴 ) ) | |
| 206 | 205 | reu4 | ⊢ ( ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ∧ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 207 | 118 204 206 | sylanbrc | ⊢ ( 𝐴 ∈ ( N × N ) → ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |