This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enqer | ⊢ ~Q Er ( N × N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enq | ⊢ ~Q = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 ·N 𝑢 ) = ( 𝑤 ·N 𝑣 ) ) ) } | |
| 2 | mulcompi | ⊢ ( 𝑥 ·N 𝑦 ) = ( 𝑦 ·N 𝑥 ) | |
| 3 | mulclpi | ⊢ ( ( 𝑥 ∈ N ∧ 𝑦 ∈ N ) → ( 𝑥 ·N 𝑦 ) ∈ N ) | |
| 4 | mulasspi | ⊢ ( ( 𝑥 ·N 𝑦 ) ·N 𝑧 ) = ( 𝑥 ·N ( 𝑦 ·N 𝑧 ) ) | |
| 5 | mulcanpi | ⊢ ( ( 𝑥 ∈ N ∧ 𝑦 ∈ N ) → ( ( 𝑥 ·N 𝑦 ) = ( 𝑥 ·N 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 6 | 5 | biimpd | ⊢ ( ( 𝑥 ∈ N ∧ 𝑦 ∈ N ) → ( ( 𝑥 ·N 𝑦 ) = ( 𝑥 ·N 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 7 | 1 2 3 4 6 | ecopover | ⊢ ~Q Er ( N × N ) |