This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcanpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) | |
| 2 | eleq1 | ⊢ ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → ( ( 𝐴 ·N 𝐵 ) ∈ N ↔ ( 𝐴 ·N 𝐶 ) ∈ N ) ) | |
| 3 | 1 2 | imbitrid | ⊢ ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐶 ) ∈ N ) ) |
| 4 | 3 | imp | ⊢ ( ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) → ( 𝐴 ·N 𝐶 ) ∈ N ) |
| 5 | dmmulpi | ⊢ dom ·N = ( N × N ) | |
| 6 | 0npi | ⊢ ¬ ∅ ∈ N | |
| 7 | 5 6 | ndmovrcl | ⊢ ( ( 𝐴 ·N 𝐶 ) ∈ N → ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) ) |
| 8 | simpr | ⊢ ( ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) → 𝐶 ∈ N ) | |
| 9 | 4 7 8 | 3syl | ⊢ ( ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) → 𝐶 ∈ N ) |
| 10 | mulpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
| 12 | mulpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐶 ) = ( 𝐴 ·o 𝐶 ) ) | |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐶 ) = ( 𝐴 ·o 𝐶 ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ↔ ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ) ) |
| 15 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 16 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 17 | pinn | ⊢ ( 𝐶 ∈ N → 𝐶 ∈ ω ) | |
| 18 | elni2 | ⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) | |
| 19 | 18 | simprbi | ⊢ ( 𝐴 ∈ N → ∅ ∈ 𝐴 ) |
| 20 | nnmcan | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | |
| 21 | 20 | biimpd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 22 | 19 21 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ 𝐴 ∈ N ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 23 | 22 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
| 24 | 15 16 17 23 | syl3an | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
| 25 | 24 | 3exp | ⊢ ( 𝐴 ∈ N → ( 𝐵 ∈ N → ( 𝐶 ∈ N → ( 𝐴 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) ) |
| 26 | 25 | com4r | ⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ N → ( 𝐵 ∈ N → ( 𝐶 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) ) |
| 27 | 26 | pm2.43i | ⊢ ( 𝐴 ∈ N → ( 𝐵 ∈ N → ( 𝐶 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) |
| 28 | 27 | imp31 | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 29 | 14 28 | sylbid | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 30 | 9 29 | sylan2 | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 31 | 30 | exp32 | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) |
| 32 | 31 | imp4b | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) → ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) → 𝐵 = 𝐶 ) ) |
| 33 | 32 | pm2.43i | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) → 𝐵 = 𝐶 ) |
| 34 | 33 | ex | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 35 | oveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) | |
| 36 | 34 35 | impbid1 | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |