This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) | |
| 2 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 𝑅 𝐵 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝐵 = 𝐶 → ( ¬ 𝐵 𝑅 𝐵 ↔ ¬ 𝐵 𝑅 𝐶 ) ) |
| 4 | 1 3 | syl5ibcom | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 = 𝐶 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 5 | 4 | adantrr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 6 | so2nr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ) | |
| 7 | imnan | ⊢ ( ( 𝐵 𝑅 𝐶 → ¬ 𝐶 𝑅 𝐵 ) ↔ ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 → ¬ 𝐶 𝑅 𝐵 ) ) |
| 9 | 8 | con2d | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐵 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 10 | 5 9 | jaod | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) → ¬ 𝐵 𝑅 𝐶 ) ) |
| 11 | solin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) | |
| 12 | 3orass | ⊢ ( ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ↔ ( 𝐵 𝑅 𝐶 ∨ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 14 | 13 | ord | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐵 𝑅 𝐶 → ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 15 | 10 14 | impbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ↔ ¬ 𝐵 𝑅 𝐶 ) ) |
| 16 | 15 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |