This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of nqereu : the function /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqerf | ⊢ [Q] : ( N × N ) ⟶ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-erq | ⊢ [Q] = ( ~Q ∩ ( ( N × N ) × Q ) ) | |
| 2 | inss2 | ⊢ ( ~Q ∩ ( ( N × N ) × Q ) ) ⊆ ( ( N × N ) × Q ) | |
| 3 | 1 2 | eqsstri | ⊢ [Q] ⊆ ( ( N × N ) × Q ) |
| 4 | xpss | ⊢ ( ( N × N ) × Q ) ⊆ ( V × V ) | |
| 5 | 3 4 | sstri | ⊢ [Q] ⊆ ( V × V ) |
| 6 | df-rel | ⊢ ( Rel [Q] ↔ [Q] ⊆ ( V × V ) ) | |
| 7 | 5 6 | mpbir | ⊢ Rel [Q] |
| 8 | nqereu | ⊢ ( 𝑥 ∈ ( N × N ) → ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 ) | |
| 9 | df-reu | ⊢ ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 ↔ ∃! 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) | |
| 10 | eumo | ⊢ ( ∃! 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) | |
| 11 | 9 10 | sylbi | ⊢ ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
| 12 | 8 11 | syl | ⊢ ( 𝑥 ∈ ( N × N ) → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
| 13 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) ↔ ( 𝑥 ∈ ( N × N ) → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) ) | |
| 14 | 12 13 | mpbir | ⊢ ∃* 𝑦 ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
| 15 | 3 | brel | ⊢ ( 𝑥 [Q] 𝑦 → ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ) |
| 16 | 15 | simpld | ⊢ ( 𝑥 [Q] 𝑦 → 𝑥 ∈ ( N × N ) ) |
| 17 | 15 | simprd | ⊢ ( 𝑥 [Q] 𝑦 → 𝑦 ∈ Q ) |
| 18 | enqer | ⊢ ~Q Er ( N × N ) | |
| 19 | 18 | a1i | ⊢ ( 𝑥 [Q] 𝑦 → ~Q Er ( N × N ) ) |
| 20 | inss1 | ⊢ ( ~Q ∩ ( ( N × N ) × Q ) ) ⊆ ~Q | |
| 21 | 1 20 | eqsstri | ⊢ [Q] ⊆ ~Q |
| 22 | 21 | ssbri | ⊢ ( 𝑥 [Q] 𝑦 → 𝑥 ~Q 𝑦 ) |
| 23 | 19 22 | ersym | ⊢ ( 𝑥 [Q] 𝑦 → 𝑦 ~Q 𝑥 ) |
| 24 | 16 17 23 | jca32 | ⊢ ( 𝑥 [Q] 𝑦 → ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) ) |
| 25 | 24 | moimi | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) → ∃* 𝑦 𝑥 [Q] 𝑦 ) |
| 26 | 14 25 | ax-mp | ⊢ ∃* 𝑦 𝑥 [Q] 𝑦 |
| 27 | 26 | ax-gen | ⊢ ∀ 𝑥 ∃* 𝑦 𝑥 [Q] 𝑦 |
| 28 | dffun6 | ⊢ ( Fun [Q] ↔ ( Rel [Q] ∧ ∀ 𝑥 ∃* 𝑦 𝑥 [Q] 𝑦 ) ) | |
| 29 | 7 27 28 | mpbir2an | ⊢ Fun [Q] |
| 30 | dmss | ⊢ ( [Q] ⊆ ( ( N × N ) × Q ) → dom [Q] ⊆ dom ( ( N × N ) × Q ) ) | |
| 31 | 3 30 | ax-mp | ⊢ dom [Q] ⊆ dom ( ( N × N ) × Q ) |
| 32 | 1nq | ⊢ 1Q ∈ Q | |
| 33 | ne0i | ⊢ ( 1Q ∈ Q → Q ≠ ∅ ) | |
| 34 | dmxp | ⊢ ( Q ≠ ∅ → dom ( ( N × N ) × Q ) = ( N × N ) ) | |
| 35 | 32 33 34 | mp2b | ⊢ dom ( ( N × N ) × Q ) = ( N × N ) |
| 36 | 31 35 | sseqtri | ⊢ dom [Q] ⊆ ( N × N ) |
| 37 | reurex | ⊢ ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃ 𝑦 ∈ Q 𝑦 ~Q 𝑥 ) | |
| 38 | simpll | ⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑥 ∈ ( N × N ) ) | |
| 39 | simplr | ⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑦 ∈ Q ) | |
| 40 | 18 | a1i | ⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → ~Q Er ( N × N ) ) |
| 41 | simpr | ⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑦 ~Q 𝑥 ) | |
| 42 | 40 41 | ersym | ⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑥 ~Q 𝑦 ) |
| 43 | 1 | breqi | ⊢ ( 𝑥 [Q] 𝑦 ↔ 𝑥 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝑦 ) |
| 44 | brinxp2 | ⊢ ( 𝑥 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝑦 ↔ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) ) | |
| 45 | 43 44 | bitri | ⊢ ( 𝑥 [Q] 𝑦 ↔ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) ) |
| 46 | 38 39 42 45 | syl21anbrc | ⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑥 [Q] 𝑦 ) |
| 47 | 46 | ex | ⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) → ( 𝑦 ~Q 𝑥 → 𝑥 [Q] 𝑦 ) ) |
| 48 | 47 | reximdva | ⊢ ( 𝑥 ∈ ( N × N ) → ( ∃ 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃ 𝑦 ∈ Q 𝑥 [Q] 𝑦 ) ) |
| 49 | rexex | ⊢ ( ∃ 𝑦 ∈ Q 𝑥 [Q] 𝑦 → ∃ 𝑦 𝑥 [Q] 𝑦 ) | |
| 50 | 37 48 49 | syl56 | ⊢ ( 𝑥 ∈ ( N × N ) → ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃ 𝑦 𝑥 [Q] 𝑦 ) ) |
| 51 | 8 50 | mpd | ⊢ ( 𝑥 ∈ ( N × N ) → ∃ 𝑦 𝑥 [Q] 𝑦 ) |
| 52 | vex | ⊢ 𝑥 ∈ V | |
| 53 | 52 | eldm | ⊢ ( 𝑥 ∈ dom [Q] ↔ ∃ 𝑦 𝑥 [Q] 𝑦 ) |
| 54 | 51 53 | sylibr | ⊢ ( 𝑥 ∈ ( N × N ) → 𝑥 ∈ dom [Q] ) |
| 55 | 54 | ssriv | ⊢ ( N × N ) ⊆ dom [Q] |
| 56 | 36 55 | eqssi | ⊢ dom [Q] = ( N × N ) |
| 57 | df-fn | ⊢ ( [Q] Fn ( N × N ) ↔ ( Fun [Q] ∧ dom [Q] = ( N × N ) ) ) | |
| 58 | 29 56 57 | mpbir2an | ⊢ [Q] Fn ( N × N ) |
| 59 | 3 | rnssi | ⊢ ran [Q] ⊆ ran ( ( N × N ) × Q ) |
| 60 | rnxpss | ⊢ ran ( ( N × N ) × Q ) ⊆ Q | |
| 61 | 59 60 | sstri | ⊢ ran [Q] ⊆ Q |
| 62 | df-f | ⊢ ( [Q] : ( N × N ) ⟶ Q ↔ ( [Q] Fn ( N × N ) ∧ ran [Q] ⊆ Q ) ) | |
| 63 | 58 61 62 | mpbir2an | ⊢ [Q] : ( N × N ) ⟶ Q |