This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996) (Proof shortened by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsopi | ⊢ <N Or N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni | ⊢ N = ( ω ∖ { ∅ } ) | |
| 2 | difss | ⊢ ( ω ∖ { ∅ } ) ⊆ ω | |
| 3 | omsson | ⊢ ω ⊆ On | |
| 4 | 2 3 | sstri | ⊢ ( ω ∖ { ∅ } ) ⊆ On |
| 5 | 1 4 | eqsstri | ⊢ N ⊆ On |
| 6 | epweon | ⊢ E We On | |
| 7 | weso | ⊢ ( E We On → E Or On ) | |
| 8 | 6 7 | ax-mp | ⊢ E Or On |
| 9 | soss | ⊢ ( N ⊆ On → ( E Or On → E Or N ) ) | |
| 10 | 5 8 9 | mp2 | ⊢ E Or N |
| 11 | df-lti | ⊢ <N = ( E ∩ ( N × N ) ) | |
| 12 | soeq1 | ⊢ ( <N = ( E ∩ ( N × N ) ) → ( <N Or N ↔ ( E ∩ ( N × N ) ) Or N ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( <N Or N ↔ ( E ∩ ( N × N ) ) Or N ) |
| 14 | soinxp | ⊢ ( E Or N ↔ ( E ∩ ( N × N ) ) Or N ) | |
| 15 | 13 14 | bitr4i | ⊢ ( <N Or N ↔ E Or N ) |
| 16 | 10 15 | mpbir | ⊢ <N Or N |