This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation. For a shorter proof using ax-rep , see mulgfvalALT . (Contributed by Mario Carneiro, 11-Dec-2014) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mulgval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mulgval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| mulgval.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgfval | ⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mulgval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | mulgval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | mulgval.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 6 | eqidd | ⊢ ( 𝑤 = 𝐺 → ℤ = ℤ ) | |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 9 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝐺 ) ) | |
| 10 | 9 3 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( 0g ‘ 𝑤 ) = 0 ) |
| 11 | fvex | ⊢ ( +g ‘ 𝑤 ) ∈ V | |
| 12 | 1z | ⊢ 1 ∈ ℤ | |
| 13 | 11 12 | seqexw | ⊢ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝑤 = 𝐺 → seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V ) |
| 15 | id | ⊢ ( 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) → 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) | |
| 17 | 16 2 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = + ) |
| 18 | 17 | seqeq2d | ⊢ ( 𝑤 = 𝐺 → seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) = seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
| 19 | 15 18 | sylan9eqr | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑠 = seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
| 20 | 19 | fveq1d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
| 21 | simpl | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑤 = 𝐺 ) | |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg ‘ 𝑤 ) = ( invg ‘ 𝐺 ) ) |
| 23 | 22 4 | eqtr4di | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg ‘ 𝑤 ) = 𝐼 ) |
| 24 | 19 | fveq1d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ - 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) |
| 25 | 23 24 | fveq12d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) = ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) |
| 26 | 20 25 | ifeq12d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) |
| 27 | 14 26 | csbied | ⊢ ( 𝑤 = 𝐺 → ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) |
| 28 | 10 27 | ifeq12d | ⊢ ( 𝑤 = 𝐺 → if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) = if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| 29 | 6 8 28 | mpoeq123dv | ⊢ ( 𝑤 = 𝐺 → ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
| 30 | df-mulg | ⊢ .g = ( 𝑤 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) | |
| 31 | zex | ⊢ ℤ ∈ V | |
| 32 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 33 | snex | ⊢ { 0 } ∈ V | |
| 34 | 2 | fvexi | ⊢ + ∈ V |
| 35 | 34 | rnex | ⊢ ran + ∈ V |
| 36 | 35 32 | unex | ⊢ ( ran + ∪ 𝐵 ) ∈ V |
| 37 | 4 | fvexi | ⊢ 𝐼 ∈ V |
| 38 | 37 | rnex | ⊢ ran 𝐼 ∈ V |
| 39 | p0ex | ⊢ { ∅ } ∈ V | |
| 40 | 38 39 | unex | ⊢ ( ran 𝐼 ∪ { ∅ } ) ∈ V |
| 41 | 36 40 | unex | ⊢ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ∈ V |
| 42 | 33 41 | unex | ⊢ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ∈ V |
| 43 | ssun1 | ⊢ { 0 } ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) | |
| 44 | 3 | fvexi | ⊢ 0 ∈ V |
| 45 | 44 | snid | ⊢ 0 ∈ { 0 } |
| 46 | 43 45 | sselii | ⊢ 0 ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 47 | 46 | a1i | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 48 | ssun2 | ⊢ 𝐵 ⊆ ( ran + ∪ 𝐵 ) | |
| 49 | ssun1 | ⊢ ( ran + ∪ 𝐵 ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) | |
| 50 | 48 49 | sstri | ⊢ 𝐵 ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
| 51 | ssun2 | ⊢ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) | |
| 52 | 50 51 | sstri | ⊢ 𝐵 ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 53 | fveq2 | ⊢ ( 𝑛 = 1 → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ) |
| 55 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) = ( ( ℕ × { 𝑥 } ) ‘ 1 ) ) | |
| 56 | 12 55 | ax-mp | ⊢ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) = ( ( ℕ × { 𝑥 } ) ‘ 1 ) |
| 57 | 1nn | ⊢ 1 ∈ ℕ | |
| 58 | vex | ⊢ 𝑥 ∈ V | |
| 59 | 58 | fvconst2 | ⊢ ( 1 ∈ ℕ → ( ( ℕ × { 𝑥 } ) ‘ 1 ) = 𝑥 ) |
| 60 | 57 59 | ax-mp | ⊢ ( ( ℕ × { 𝑥 } ) ‘ 1 ) = 𝑥 |
| 61 | 60 | eleq1i | ⊢ ( ( ( ℕ × { 𝑥 } ) ‘ 1 ) ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) |
| 62 | 61 | biimpri | ⊢ ( 𝑥 ∈ 𝐵 → ( ( ℕ × { 𝑥 } ) ‘ 1 ) ∈ 𝐵 ) |
| 63 | 56 62 | eqeltrid | ⊢ ( 𝑥 ∈ 𝐵 → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ∈ 𝐵 ) |
| 64 | 63 | adantr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ∈ 𝐵 ) |
| 65 | 54 64 | eqeltrd | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ 𝐵 ) |
| 66 | 52 65 | sselid | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 67 | 66 | ad4ant24 | ⊢ ( ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 68 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 69 | npcan1 | ⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) | |
| 70 | 68 69 | syl | ⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 71 | 70 | fveq2d | ⊢ ( 𝑛 ∈ ℤ → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
| 73 | seqp1 | ⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ) | |
| 74 | ssun1 | ⊢ ran + ⊆ ( ran + ∪ 𝐵 ) | |
| 75 | ssun2 | ⊢ { ∅ } ⊆ ( ran 𝐼 ∪ { ∅ } ) | |
| 76 | unss12 | ⊢ ( ( ran + ⊆ ( ran + ∪ 𝐵 ) ∧ { ∅ } ⊆ ( ran 𝐼 ∪ { ∅ } ) ) → ( ran + ∪ { ∅ } ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) | |
| 77 | 74 75 76 | mp2an | ⊢ ( ran + ∪ { ∅ } ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
| 78 | 77 51 | sstri | ⊢ ( ran + ∪ { ∅ } ) ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 79 | df-ov | ⊢ ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) = ( + ‘ 〈 ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) , ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) 〉 ) | |
| 80 | fvrn0 | ⊢ ( + ‘ 〈 ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) , ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) 〉 ) ∈ ( ran + ∪ { ∅ } ) | |
| 81 | 79 80 | eqeltri | ⊢ ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( ran + ∪ { ∅ } ) |
| 82 | 78 81 | sselii | ⊢ ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 83 | 73 82 | eqeltrdi | ⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 84 | 83 | adantl | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 85 | 72 84 | eqeltrrd | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 86 | 85 | ad4ant14 | ⊢ ( ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 87 | uzm1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) ) | |
| 88 | 87 | adantl | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 89 | 67 86 88 | mpjaodan | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 90 | simpr | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 91 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 𝑥 } ) ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 92 | 12 91 | ax-mp | ⊢ seq 1 ( + , ( ℕ × { 𝑥 } ) ) Fn ( ℤ≥ ‘ 1 ) |
| 93 | 92 | fndmi | ⊢ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) = ( ℤ≥ ‘ 1 ) |
| 94 | 93 | eleq2i | ⊢ ( 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 95 | 90 94 | sylnibr | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ¬ 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
| 96 | ndmfv | ⊢ ( ¬ 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ∅ ) | |
| 97 | 95 96 | syl | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ∅ ) |
| 98 | ssun2 | ⊢ ( ran 𝐼 ∪ { ∅ } ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) | |
| 99 | 75 98 | sstri | ⊢ { ∅ } ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
| 100 | 99 51 | sstri | ⊢ { ∅ } ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 101 | 0ex | ⊢ ∅ ∈ V | |
| 102 | 101 | snid | ⊢ ∅ ∈ { ∅ } |
| 103 | 100 102 | sselii | ⊢ ∅ ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 104 | 103 | a1i | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ∅ ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 105 | 97 104 | eqeltrd | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 106 | 89 105 | pm2.61dan | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 107 | 98 51 | sstri | ⊢ ( ran 𝐼 ∪ { ∅ } ) ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 108 | fvrn0 | ⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( ran 𝐼 ∪ { ∅ } ) | |
| 109 | 107 108 | sselii | ⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 110 | 109 | a1i | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 111 | 106 110 | ifcld | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 112 | 47 111 | ifcld | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
| 113 | 112 | rgen2 | ⊢ ∀ 𝑛 ∈ ℤ ∀ 𝑥 ∈ 𝐵 if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
| 114 | 31 32 42 113 | mpoexw | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ∈ V |
| 115 | 29 30 114 | fvmpt | ⊢ ( 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
| 116 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) | |
| 117 | eqid | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) | |
| 118 | fvex | ⊢ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ V | |
| 119 | fvex | ⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ V | |
| 120 | 118 119 | ifex | ⊢ if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ V |
| 121 | 44 120 | ifex | ⊢ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ V |
| 122 | 117 121 | fnmpoi | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) |
| 123 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 124 | 1 123 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 125 | 124 | xpeq2d | ⊢ ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ( ℤ × ∅ ) ) |
| 126 | xp0 | ⊢ ( ℤ × ∅ ) = ∅ | |
| 127 | 125 126 | eqtrdi | ⊢ ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ∅ ) |
| 128 | 127 | fneq2d | ⊢ ( ¬ 𝐺 ∈ V → ( ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) ↔ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) ) |
| 129 | 122 128 | mpbii | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) |
| 130 | fn0 | ⊢ ( ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ↔ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ ) | |
| 131 | 129 130 | sylib | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ ) |
| 132 | 116 131 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
| 133 | 115 132 | pm2.61i | ⊢ ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| 134 | 5 133 | eqtri | ⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |