This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of mulgfval using ax-rep . (Contributed by Mario Carneiro, 11-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mulgval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mulgval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| mulgval.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgfvalALT | ⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mulgval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | mulgval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | mulgval.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 6 | eqidd | ⊢ ( 𝑤 = 𝐺 → ℤ = ℤ ) | |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 9 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝐺 ) ) | |
| 10 | 9 3 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( 0g ‘ 𝑤 ) = 0 ) |
| 11 | seqex | ⊢ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V | |
| 12 | 11 | a1i | ⊢ ( 𝑤 = 𝐺 → seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V ) |
| 13 | id | ⊢ ( 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) → 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) | |
| 15 | 14 2 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = + ) |
| 16 | 15 | seqeq2d | ⊢ ( 𝑤 = 𝐺 → seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) = seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
| 17 | 13 16 | sylan9eqr | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑠 = seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
| 18 | 17 | fveq1d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
| 19 | simpl | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑤 = 𝐺 ) | |
| 20 | 19 | fveq2d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg ‘ 𝑤 ) = ( invg ‘ 𝐺 ) ) |
| 21 | 20 4 | eqtr4di | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg ‘ 𝑤 ) = 𝐼 ) |
| 22 | 17 | fveq1d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ - 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) |
| 23 | 21 22 | fveq12d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) = ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) |
| 24 | 18 23 | ifeq12d | ⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) |
| 25 | 12 24 | csbied | ⊢ ( 𝑤 = 𝐺 → ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) |
| 26 | 10 25 | ifeq12d | ⊢ ( 𝑤 = 𝐺 → if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) = if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| 27 | 6 8 26 | mpoeq123dv | ⊢ ( 𝑤 = 𝐺 → ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
| 28 | df-mulg | ⊢ .g = ( 𝑤 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) | |
| 29 | zex | ⊢ ℤ ∈ V | |
| 30 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 31 | 29 30 | mpoex | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ∈ V |
| 32 | 27 28 31 | fvmpt | ⊢ ( 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
| 33 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) | |
| 34 | eqid | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) | |
| 35 | 3 | fvexi | ⊢ 0 ∈ V |
| 36 | fvex | ⊢ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ V | |
| 37 | fvex | ⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ V | |
| 38 | 36 37 | ifex | ⊢ if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ V |
| 39 | 35 38 | ifex | ⊢ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ V |
| 40 | 34 39 | fnmpoi | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) |
| 41 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 42 | 1 41 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 43 | 42 | xpeq2d | ⊢ ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ( ℤ × ∅ ) ) |
| 44 | xp0 | ⊢ ( ℤ × ∅ ) = ∅ | |
| 45 | 43 44 | eqtrdi | ⊢ ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ∅ ) |
| 46 | 45 | fneq2d | ⊢ ( ¬ 𝐺 ∈ V → ( ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) ↔ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) ) |
| 47 | 40 46 | mpbii | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) |
| 48 | fn0 | ⊢ ( ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ↔ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ ) | |
| 49 | 47 48 | sylib | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ ) |
| 50 | 33 49 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
| 51 | 32 50 | pm2.61i | ⊢ ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| 52 | 5 51 | eqtri | ⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |