This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mulg | ⊢ .g = ( 𝑔 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmg | ⊢ .g | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vn | ⊢ 𝑛 | |
| 4 | cz | ⊢ ℤ | |
| 5 | vx | ⊢ 𝑥 | |
| 6 | cbs | ⊢ Base | |
| 7 | 1 | cv | ⊢ 𝑔 |
| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 9 | 3 | cv | ⊢ 𝑛 |
| 10 | cc0 | ⊢ 0 | |
| 11 | 9 10 | wceq | ⊢ 𝑛 = 0 |
| 12 | c0g | ⊢ 0g | |
| 13 | 7 12 | cfv | ⊢ ( 0g ‘ 𝑔 ) |
| 14 | c1 | ⊢ 1 | |
| 15 | cplusg | ⊢ +g | |
| 16 | 7 15 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 17 | cn | ⊢ ℕ | |
| 18 | 5 | cv | ⊢ 𝑥 |
| 19 | 18 | csn | ⊢ { 𝑥 } |
| 20 | 17 19 | cxp | ⊢ ( ℕ × { 𝑥 } ) |
| 21 | 16 20 14 | cseq | ⊢ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) |
| 22 | vs | ⊢ 𝑠 | |
| 23 | clt | ⊢ < | |
| 24 | 10 9 23 | wbr | ⊢ 0 < 𝑛 |
| 25 | 22 | cv | ⊢ 𝑠 |
| 26 | 9 25 | cfv | ⊢ ( 𝑠 ‘ 𝑛 ) |
| 27 | cminusg | ⊢ invg | |
| 28 | 7 27 | cfv | ⊢ ( invg ‘ 𝑔 ) |
| 29 | 9 | cneg | ⊢ - 𝑛 |
| 30 | 29 25 | cfv | ⊢ ( 𝑠 ‘ - 𝑛 ) |
| 31 | 30 28 | cfv | ⊢ ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) |
| 32 | 24 26 31 | cif | ⊢ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) |
| 33 | 22 21 32 | csb | ⊢ ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) |
| 34 | 11 13 33 | cif | ⊢ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) |
| 35 | 3 5 4 8 34 | cmpo | ⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) |
| 36 | 1 2 35 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) |
| 37 | 0 36 | wceq | ⊢ .g = ( 𝑔 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑔 ) , ⦋ seq 1 ( ( +g ‘ 𝑔 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑔 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) |