This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of seqex that holds without ax-rep . A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqexw.1 | ⊢ + ∈ V | |
| seqexw.2 | ⊢ 𝑀 ∈ ℤ | ||
| Assertion | seqexw | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqexw.1 | ⊢ + ∈ V | |
| 2 | seqexw.2 | ⊢ 𝑀 ∈ ℤ | |
| 3 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) |
| 5 | fnfun | ⊢ ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) → Fun seq 𝑀 ( + , 𝐹 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ Fun seq 𝑀 ( + , 𝐹 ) |
| 7 | 4 | fndmi | ⊢ dom seq 𝑀 ( + , 𝐹 ) = ( ℤ≥ ‘ 𝑀 ) |
| 8 | fvex | ⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V | |
| 9 | 7 8 | eqeltri | ⊢ dom seq 𝑀 ( + , 𝐹 ) ∈ V |
| 10 | 1 | rnex | ⊢ ran + ∈ V |
| 11 | prex | ⊢ { ∅ , ( 𝐹 ‘ 𝑀 ) } ∈ V | |
| 12 | 10 11 | unex | ⊢ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ∈ V |
| 13 | fveq2 | ⊢ ( 𝑦 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑦 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑦 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) ) |
| 21 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 22 | ssun2 | ⊢ { ∅ , ( 𝐹 ‘ 𝑀 ) } ⊆ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) | |
| 23 | fvex | ⊢ ( 𝐹 ‘ 𝑀 ) ∈ V | |
| 24 | 23 | prid2 | ⊢ ( 𝐹 ‘ 𝑀 ) ∈ { ∅ , ( 𝐹 ‘ 𝑀 ) } |
| 25 | 22 24 | sselii | ⊢ ( 𝐹 ‘ 𝑀 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) |
| 26 | 21 25 | eqeltrdi | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) |
| 27 | seqp1 | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) |
| 29 | df-ov | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = ( + ‘ 〈 ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) , ( 𝐹 ‘ ( 𝑧 + 1 ) ) 〉 ) | |
| 30 | snsspr1 | ⊢ { ∅ } ⊆ { ∅ , ( 𝐹 ‘ 𝑀 ) } | |
| 31 | unss2 | ⊢ ( { ∅ } ⊆ { ∅ , ( 𝐹 ‘ 𝑀 ) } → ( ran + ∪ { ∅ } ) ⊆ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( ran + ∪ { ∅ } ) ⊆ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) |
| 33 | fvrn0 | ⊢ ( + ‘ 〈 ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) , ( 𝐹 ‘ ( 𝑧 + 1 ) ) 〉 ) ∈ ( ran + ∪ { ∅ } ) | |
| 34 | 32 33 | sselii | ⊢ ( + ‘ 〈 ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) , ( 𝐹 ‘ ( 𝑧 + 1 ) ) 〉 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) |
| 35 | 29 34 | eqeltri | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) |
| 36 | 35 | a1i | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) |
| 37 | 28 36 | eqeltrd | ⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) |
| 38 | 37 | ex | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) ) |
| 39 | 14 16 18 20 26 38 | uzind4 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) |
| 40 | 39 | rgen | ⊢ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) |
| 41 | fnfvrnss | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) → ran seq 𝑀 ( + , 𝐹 ) ⊆ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) ) | |
| 42 | 4 40 41 | mp2an | ⊢ ran seq 𝑀 ( + , 𝐹 ) ⊆ ( ran + ∪ { ∅ , ( 𝐹 ‘ 𝑀 ) } ) |
| 43 | 12 42 | ssexi | ⊢ ran seq 𝑀 ( + , 𝐹 ) ∈ V |
| 44 | funexw | ⊢ ( ( Fun seq 𝑀 ( + , 𝐹 ) ∧ dom seq 𝑀 ( + , 𝐹 ) ∈ V ∧ ran seq 𝑀 ( + , 𝐹 ) ∈ V ) → seq 𝑀 ( + , 𝐹 ) ∈ V ) | |
| 45 | 6 9 43 44 | mp3an | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V |