This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzm1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 2 | 1 | a1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → 𝑀 ∈ ℤ ) ) |
| 3 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 4 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 6 | 5 | a1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → ( 𝑁 − 1 ) ∈ ℤ ) ) |
| 7 | df-ne | ⊢ ( 𝑁 ≠ 𝑀 ↔ ¬ 𝑁 = 𝑀 ) | |
| 8 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 9 | 1 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 10 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) | |
| 11 | 9 10 | ltlend | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) ) ) |
| 12 | 11 | biimprd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) → 𝑀 < 𝑁 ) ) |
| 13 | 8 12 | mpand | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 ≠ 𝑀 → 𝑀 < 𝑁 ) ) |
| 14 | 7 13 | biimtrrid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → 𝑀 < 𝑁 ) ) |
| 15 | zltlem1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) | |
| 16 | 1 3 15 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 17 | 14 16 | sylibd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 18 | 2 6 17 | 3jcad | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) ) |
| 19 | eluz2 | ⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) | |
| 20 | 18 19 | imbitrrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 21 | 20 | orrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |