This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation. For a shorter proof using ax-rep , see mulgfvalALT . (Contributed by Mario Carneiro, 11-Dec-2014) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgval.b | |- B = ( Base ` G ) |
|
| mulgval.p | |- .+ = ( +g ` G ) |
||
| mulgval.o | |- .0. = ( 0g ` G ) |
||
| mulgval.i | |- I = ( invg ` G ) |
||
| mulgval.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgfval | |- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b | |- B = ( Base ` G ) |
|
| 2 | mulgval.p | |- .+ = ( +g ` G ) |
|
| 3 | mulgval.o | |- .0. = ( 0g ` G ) |
|
| 4 | mulgval.i | |- I = ( invg ` G ) |
|
| 5 | mulgval.t | |- .x. = ( .g ` G ) |
|
| 6 | eqidd | |- ( w = G -> ZZ = ZZ ) |
|
| 7 | fveq2 | |- ( w = G -> ( Base ` w ) = ( Base ` G ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( w = G -> ( Base ` w ) = B ) |
| 9 | fveq2 | |- ( w = G -> ( 0g ` w ) = ( 0g ` G ) ) |
|
| 10 | 9 3 | eqtr4di | |- ( w = G -> ( 0g ` w ) = .0. ) |
| 11 | fvex | |- ( +g ` w ) e. _V |
|
| 12 | 1z | |- 1 e. ZZ |
|
| 13 | 11 12 | seqexw | |- seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) e. _V |
| 14 | 13 | a1i | |- ( w = G -> seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) e. _V ) |
| 15 | id | |- ( s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) -> s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) |
|
| 16 | fveq2 | |- ( w = G -> ( +g ` w ) = ( +g ` G ) ) |
|
| 17 | 16 2 | eqtr4di | |- ( w = G -> ( +g ` w ) = .+ ) |
| 18 | 17 | seqeq2d | |- ( w = G -> seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) = seq 1 ( .+ , ( NN X. { x } ) ) ) |
| 19 | 15 18 | sylan9eqr | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> s = seq 1 ( .+ , ( NN X. { x } ) ) ) |
| 20 | 19 | fveq1d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( s ` n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) ) |
| 21 | simpl | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> w = G ) |
|
| 22 | 21 | fveq2d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( invg ` w ) = ( invg ` G ) ) |
| 23 | 22 4 | eqtr4di | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( invg ` w ) = I ) |
| 24 | 19 | fveq1d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( s ` -u n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) |
| 25 | 23 24 | fveq12d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( ( invg ` w ) ` ( s ` -u n ) ) = ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) |
| 26 | 20 25 | ifeq12d | |- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) = if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) |
| 27 | 14 26 | csbied | |- ( w = G -> [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) = if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) |
| 28 | 10 27 | ifeq12d | |- ( w = G -> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) = if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 29 | 6 8 28 | mpoeq123dv | |- ( w = G -> ( n e. ZZ , x e. ( Base ` w ) |-> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
| 30 | df-mulg | |- .g = ( w e. _V |-> ( n e. ZZ , x e. ( Base ` w ) |-> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) ) ) |
|
| 31 | zex | |- ZZ e. _V |
|
| 32 | 1 | fvexi | |- B e. _V |
| 33 | snex | |- { .0. } e. _V |
|
| 34 | 2 | fvexi | |- .+ e. _V |
| 35 | 34 | rnex | |- ran .+ e. _V |
| 36 | 35 32 | unex | |- ( ran .+ u. B ) e. _V |
| 37 | 4 | fvexi | |- I e. _V |
| 38 | 37 | rnex | |- ran I e. _V |
| 39 | p0ex | |- { (/) } e. _V |
|
| 40 | 38 39 | unex | |- ( ran I u. { (/) } ) e. _V |
| 41 | 36 40 | unex | |- ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) e. _V |
| 42 | 33 41 | unex | |- ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) e. _V |
| 43 | ssun1 | |- { .0. } C_ ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
|
| 44 | 3 | fvexi | |- .0. e. _V |
| 45 | 44 | snid | |- .0. e. { .0. } |
| 46 | 43 45 | sselii | |- .0. e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 47 | 46 | a1i | |- ( ( n e. ZZ /\ x e. B ) -> .0. e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 48 | ssun2 | |- B C_ ( ran .+ u. B ) |
|
| 49 | ssun1 | |- ( ran .+ u. B ) C_ ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) |
|
| 50 | 48 49 | sstri | |- B C_ ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) |
| 51 | ssun2 | |- ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) C_ ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
|
| 52 | 50 51 | sstri | |- B C_ ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 53 | fveq2 | |- ( n = 1 -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` 1 ) ) |
|
| 54 | 53 | adantl | |- ( ( x e. B /\ n = 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` 1 ) ) |
| 55 | seq1 | |- ( 1 e. ZZ -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` 1 ) = ( ( NN X. { x } ) ` 1 ) ) |
|
| 56 | 12 55 | ax-mp | |- ( seq 1 ( .+ , ( NN X. { x } ) ) ` 1 ) = ( ( NN X. { x } ) ` 1 ) |
| 57 | 1nn | |- 1 e. NN |
|
| 58 | vex | |- x e. _V |
|
| 59 | 58 | fvconst2 | |- ( 1 e. NN -> ( ( NN X. { x } ) ` 1 ) = x ) |
| 60 | 57 59 | ax-mp | |- ( ( NN X. { x } ) ` 1 ) = x |
| 61 | 60 | eleq1i | |- ( ( ( NN X. { x } ) ` 1 ) e. B <-> x e. B ) |
| 62 | 61 | biimpri | |- ( x e. B -> ( ( NN X. { x } ) ` 1 ) e. B ) |
| 63 | 56 62 | eqeltrid | |- ( x e. B -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` 1 ) e. B ) |
| 64 | 63 | adantr | |- ( ( x e. B /\ n = 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` 1 ) e. B ) |
| 65 | 54 64 | eqeltrd | |- ( ( x e. B /\ n = 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. B ) |
| 66 | 52 65 | sselid | |- ( ( x e. B /\ n = 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 67 | 66 | ad4ant24 | |- ( ( ( ( n e. ZZ /\ x e. B ) /\ n e. ( ZZ>= ` 1 ) ) /\ n = 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 68 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 69 | npcan1 | |- ( n e. CC -> ( ( n - 1 ) + 1 ) = n ) |
|
| 70 | 68 69 | syl | |- ( n e. ZZ -> ( ( n - 1 ) + 1 ) = n ) |
| 71 | 70 | fveq2d | |- ( n e. ZZ -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( ( n - 1 ) + 1 ) ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) ) |
| 72 | 71 | adantr | |- ( ( n e. ZZ /\ ( n - 1 ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( ( n - 1 ) + 1 ) ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) ) |
| 73 | seqp1 | |- ( ( n - 1 ) e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( ( n - 1 ) + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( n - 1 ) ) .+ ( ( NN X. { x } ) ` ( ( n - 1 ) + 1 ) ) ) ) |
|
| 74 | ssun1 | |- ran .+ C_ ( ran .+ u. B ) |
|
| 75 | ssun2 | |- { (/) } C_ ( ran I u. { (/) } ) |
|
| 76 | unss12 | |- ( ( ran .+ C_ ( ran .+ u. B ) /\ { (/) } C_ ( ran I u. { (/) } ) ) -> ( ran .+ u. { (/) } ) C_ ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
|
| 77 | 74 75 76 | mp2an | |- ( ran .+ u. { (/) } ) C_ ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) |
| 78 | 77 51 | sstri | |- ( ran .+ u. { (/) } ) C_ ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 79 | df-ov | |- ( ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( n - 1 ) ) .+ ( ( NN X. { x } ) ` ( ( n - 1 ) + 1 ) ) ) = ( .+ ` <. ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( n - 1 ) ) , ( ( NN X. { x } ) ` ( ( n - 1 ) + 1 ) ) >. ) |
|
| 80 | fvrn0 | |- ( .+ ` <. ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( n - 1 ) ) , ( ( NN X. { x } ) ` ( ( n - 1 ) + 1 ) ) >. ) e. ( ran .+ u. { (/) } ) |
|
| 81 | 79 80 | eqeltri | |- ( ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( n - 1 ) ) .+ ( ( NN X. { x } ) ` ( ( n - 1 ) + 1 ) ) ) e. ( ran .+ u. { (/) } ) |
| 82 | 78 81 | sselii | |- ( ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( n - 1 ) ) .+ ( ( NN X. { x } ) ` ( ( n - 1 ) + 1 ) ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 83 | 73 82 | eqeltrdi | |- ( ( n - 1 ) e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( ( n - 1 ) + 1 ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 84 | 83 | adantl | |- ( ( n e. ZZ /\ ( n - 1 ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` ( ( n - 1 ) + 1 ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 85 | 72 84 | eqeltrrd | |- ( ( n e. ZZ /\ ( n - 1 ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 86 | 85 | ad4ant14 | |- ( ( ( ( n e. ZZ /\ x e. B ) /\ n e. ( ZZ>= ` 1 ) ) /\ ( n - 1 ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 87 | uzm1 | |- ( n e. ( ZZ>= ` 1 ) -> ( n = 1 \/ ( n - 1 ) e. ( ZZ>= ` 1 ) ) ) |
|
| 88 | 87 | adantl | |- ( ( ( n e. ZZ /\ x e. B ) /\ n e. ( ZZ>= ` 1 ) ) -> ( n = 1 \/ ( n - 1 ) e. ( ZZ>= ` 1 ) ) ) |
| 89 | 67 86 88 | mpjaodan | |- ( ( ( n e. ZZ /\ x e. B ) /\ n e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 90 | simpr | |- ( ( ( n e. ZZ /\ x e. B ) /\ -. n e. ( ZZ>= ` 1 ) ) -> -. n e. ( ZZ>= ` 1 ) ) |
|
| 91 | seqfn | |- ( 1 e. ZZ -> seq 1 ( .+ , ( NN X. { x } ) ) Fn ( ZZ>= ` 1 ) ) |
|
| 92 | 12 91 | ax-mp | |- seq 1 ( .+ , ( NN X. { x } ) ) Fn ( ZZ>= ` 1 ) |
| 93 | 92 | fndmi | |- dom seq 1 ( .+ , ( NN X. { x } ) ) = ( ZZ>= ` 1 ) |
| 94 | 93 | eleq2i | |- ( n e. dom seq 1 ( .+ , ( NN X. { x } ) ) <-> n e. ( ZZ>= ` 1 ) ) |
| 95 | 90 94 | sylnibr | |- ( ( ( n e. ZZ /\ x e. B ) /\ -. n e. ( ZZ>= ` 1 ) ) -> -. n e. dom seq 1 ( .+ , ( NN X. { x } ) ) ) |
| 96 | ndmfv | |- ( -. n e. dom seq 1 ( .+ , ( NN X. { x } ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = (/) ) |
|
| 97 | 95 96 | syl | |- ( ( ( n e. ZZ /\ x e. B ) /\ -. n e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = (/) ) |
| 98 | ssun2 | |- ( ran I u. { (/) } ) C_ ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) |
|
| 99 | 75 98 | sstri | |- { (/) } C_ ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) |
| 100 | 99 51 | sstri | |- { (/) } C_ ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 101 | 0ex | |- (/) e. _V |
|
| 102 | 101 | snid | |- (/) e. { (/) } |
| 103 | 100 102 | sselii | |- (/) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 104 | 103 | a1i | |- ( ( ( n e. ZZ /\ x e. B ) /\ -. n e. ( ZZ>= ` 1 ) ) -> (/) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 105 | 97 104 | eqeltrd | |- ( ( ( n e. ZZ /\ x e. B ) /\ -. n e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 106 | 89 105 | pm2.61dan | |- ( ( n e. ZZ /\ x e. B ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 107 | 98 51 | sstri | |- ( ran I u. { (/) } ) C_ ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 108 | fvrn0 | |- ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) e. ( ran I u. { (/) } ) |
|
| 109 | 107 108 | sselii | |- ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 110 | 109 | a1i | |- ( ( n e. ZZ /\ x e. B ) -> ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 111 | 106 110 | ifcld | |- ( ( n e. ZZ /\ x e. B ) -> if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 112 | 47 111 | ifcld | |- ( ( n e. ZZ /\ x e. B ) -> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) ) |
| 113 | 112 | rgen2 | |- A. n e. ZZ A. x e. B if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) e. ( { .0. } u. ( ( ran .+ u. B ) u. ( ran I u. { (/) } ) ) ) |
| 114 | 31 32 42 113 | mpoexw | |- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) e. _V |
| 115 | 29 30 114 | fvmpt | |- ( G e. _V -> ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
| 116 | fvprc | |- ( -. G e. _V -> ( .g ` G ) = (/) ) |
|
| 117 | eqid | |- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
|
| 118 | fvex | |- ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. _V |
|
| 119 | fvex | |- ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) e. _V |
|
| 120 | 118 119 | ifex | |- if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) e. _V |
| 121 | 44 120 | ifex | |- if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) e. _V |
| 122 | 117 121 | fnmpoi | |- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn ( ZZ X. B ) |
| 123 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 124 | 1 123 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 125 | 124 | xpeq2d | |- ( -. G e. _V -> ( ZZ X. B ) = ( ZZ X. (/) ) ) |
| 126 | xp0 | |- ( ZZ X. (/) ) = (/) |
|
| 127 | 125 126 | eqtrdi | |- ( -. G e. _V -> ( ZZ X. B ) = (/) ) |
| 128 | 127 | fneq2d | |- ( -. G e. _V -> ( ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn ( ZZ X. B ) <-> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) ) ) |
| 129 | 122 128 | mpbii | |- ( -. G e. _V -> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) ) |
| 130 | fn0 | |- ( ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) <-> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = (/) ) |
|
| 131 | 129 130 | sylib | |- ( -. G e. _V -> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = (/) ) |
| 132 | 116 131 | eqtr4d | |- ( -. G e. _V -> ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
| 133 | 115 132 | pm2.61i | |- ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 134 | 5 133 | eqtri | |- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |