This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of mpoex that holds without ax-rep . If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpoexw.1 | ⊢ 𝐴 ∈ V | |
| mpoexw.2 | ⊢ 𝐵 ∈ V | ||
| mpoexw.3 | ⊢ 𝐷 ∈ V | ||
| mpoexw.4 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | ||
| Assertion | mpoexw | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoexw.1 | ⊢ 𝐴 ∈ V | |
| 2 | mpoexw.2 | ⊢ 𝐵 ∈ V | |
| 3 | mpoexw.3 | ⊢ 𝐷 ∈ V | |
| 4 | mpoexw.4 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 6 | 5 | mpofun | ⊢ Fun ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 7 | 5 | dmmpoga | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝐴 × 𝐵 ) ) |
| 8 | 4 7 | ax-mp | ⊢ dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝐴 × 𝐵 ) |
| 9 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 10 | 8 9 | eqeltri | ⊢ dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |
| 11 | 5 | rnmpo | ⊢ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } |
| 12 | 4 | rspec | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ) |
| 13 | 12 | r19.21bi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝐷 ) |
| 14 | eleq1a | ⊢ ( 𝐶 ∈ 𝐷 → ( 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) |
| 16 | 15 | rexlimdva | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) |
| 17 | 16 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) |
| 18 | 17 | abssi | ⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ⊆ 𝐷 |
| 19 | 3 18 | ssexi | ⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ∈ V |
| 20 | 11 19 | eqeltri | ⊢ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |
| 21 | funexw | ⊢ ( ( Fun ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∧ dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ∧ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) | |
| 22 | 6 10 20 21 | mp3an | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |