This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mretopd.m | ⊢ ( 𝜑 → 𝑀 ∈ ( Moore ‘ 𝐵 ) ) | |
| mretopd.z | ⊢ ( 𝜑 → ∅ ∈ 𝑀 ) | ||
| mretopd.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝑀 ) | ||
| mretopd.j | ⊢ 𝐽 = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 } | ||
| Assertion | mretopd | ⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑀 = ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mretopd.m | ⊢ ( 𝜑 → 𝑀 ∈ ( Moore ‘ 𝐵 ) ) | |
| 2 | mretopd.z | ⊢ ( 𝜑 → ∅ ∈ 𝑀 ) | |
| 3 | mretopd.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝑀 ) | |
| 4 | mretopd.j | ⊢ 𝐽 = { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 } | |
| 5 | unieq | ⊢ ( 𝑎 = ∅ → ∪ 𝑎 = ∪ ∅ ) | |
| 6 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑎 = ∅ → ∪ 𝑎 = ∅ ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑎 = ∅ → ( ∪ 𝑎 ∈ 𝐽 ↔ ∅ ∈ 𝐽 ) ) |
| 9 | 4 | ssrab3 | ⊢ 𝐽 ⊆ 𝒫 𝐵 |
| 10 | sstr | ⊢ ( ( 𝑎 ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝐵 ) → 𝑎 ⊆ 𝒫 𝐵 ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝑎 ⊆ 𝐽 → 𝑎 ⊆ 𝒫 𝐵 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → 𝑎 ⊆ 𝒫 𝐵 ) |
| 13 | sspwuni | ⊢ ( 𝑎 ⊆ 𝒫 𝐵 ↔ ∪ 𝑎 ⊆ 𝐵 ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → ∪ 𝑎 ⊆ 𝐵 ) |
| 15 | vuniex | ⊢ ∪ 𝑎 ∈ V | |
| 16 | 15 | elpw | ⊢ ( ∪ 𝑎 ∈ 𝒫 𝐵 ↔ ∪ 𝑎 ⊆ 𝐵 ) |
| 17 | 14 16 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → ∪ 𝑎 ∈ 𝒫 𝐵 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ∪ 𝑎 ∈ 𝒫 𝐵 ) |
| 19 | uniiun | ⊢ ∪ 𝑎 = ∪ 𝑏 ∈ 𝑎 𝑏 | |
| 20 | 19 | difeq2i | ⊢ ( 𝐵 ∖ ∪ 𝑎 ) = ( 𝐵 ∖ ∪ 𝑏 ∈ 𝑎 𝑏 ) |
| 21 | iindif2 | ⊢ ( 𝑎 ≠ ∅ → ∩ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) = ( 𝐵 ∖ ∪ 𝑏 ∈ 𝑎 𝑏 ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) = ( 𝐵 ∖ ∪ 𝑏 ∈ 𝑎 𝑏 ) ) |
| 23 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → 𝑀 ∈ ( Moore ‘ 𝐵 ) ) |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → 𝑎 ≠ ∅ ) | |
| 25 | difeq2 | ⊢ ( 𝑧 = 𝑏 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝑏 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑧 = 𝑏 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) ) |
| 27 | 26 4 | elrab2 | ⊢ ( 𝑏 ∈ 𝐽 ↔ ( 𝑏 ∈ 𝒫 𝐵 ∧ ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) ) |
| 28 | 27 | simprbi | ⊢ ( 𝑏 ∈ 𝐽 → ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) |
| 29 | 28 | rgen | ⊢ ∀ 𝑏 ∈ 𝐽 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 |
| 30 | ssralv | ⊢ ( 𝑎 ⊆ 𝐽 → ( ∀ 𝑏 ∈ 𝐽 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 → ∀ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → ( ∀ 𝑏 ∈ 𝐽 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 → ∀ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) ) |
| 32 | 29 31 | mpi | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → ∀ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ∀ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) |
| 34 | mreiincl | ⊢ ( ( 𝑀 ∈ ( Moore ‘ 𝐵 ) ∧ 𝑎 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) → ∩ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) | |
| 35 | 23 24 33 34 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑏 ∈ 𝑎 ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) |
| 36 | 22 35 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ( 𝐵 ∖ ∪ 𝑏 ∈ 𝑎 𝑏 ) ∈ 𝑀 ) |
| 37 | 20 36 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ( 𝐵 ∖ ∪ 𝑎 ) ∈ 𝑀 ) |
| 38 | difeq2 | ⊢ ( 𝑧 = ∪ 𝑎 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ ∪ 𝑎 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑧 = ∪ 𝑎 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ ( 𝐵 ∖ ∪ 𝑎 ) ∈ 𝑀 ) ) |
| 40 | 39 4 | elrab2 | ⊢ ( ∪ 𝑎 ∈ 𝐽 ↔ ( ∪ 𝑎 ∈ 𝒫 𝐵 ∧ ( 𝐵 ∖ ∪ 𝑎 ) ∈ 𝑀 ) ) |
| 41 | 18 37 40 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) ∧ 𝑎 ≠ ∅ ) → ∪ 𝑎 ∈ 𝐽 ) |
| 42 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐵 | |
| 43 | 42 | a1i | ⊢ ( 𝜑 → ∅ ∈ 𝒫 𝐵 ) |
| 44 | mre1cl | ⊢ ( 𝑀 ∈ ( Moore ‘ 𝐵 ) → 𝐵 ∈ 𝑀 ) | |
| 45 | 1 44 | syl | ⊢ ( 𝜑 → 𝐵 ∈ 𝑀 ) |
| 46 | difeq2 | ⊢ ( 𝑧 = ∅ → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ ∅ ) ) | |
| 47 | dif0 | ⊢ ( 𝐵 ∖ ∅ ) = 𝐵 | |
| 48 | 46 47 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( 𝐵 ∖ 𝑧 ) = 𝐵 ) |
| 49 | 48 | eleq1d | ⊢ ( 𝑧 = ∅ → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ 𝐵 ∈ 𝑀 ) ) |
| 50 | 49 4 | elrab2 | ⊢ ( ∅ ∈ 𝐽 ↔ ( ∅ ∈ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑀 ) ) |
| 51 | 43 45 50 | sylanbrc | ⊢ ( 𝜑 → ∅ ∈ 𝐽 ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → ∅ ∈ 𝐽 ) |
| 53 | 8 41 52 | pm2.61ne | ⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐽 ) → ∪ 𝑎 ∈ 𝐽 ) |
| 54 | 53 | ex | ⊢ ( 𝜑 → ( 𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽 ) ) |
| 55 | 54 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑎 ( 𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽 ) ) |
| 56 | inss1 | ⊢ ( 𝑎 ∩ 𝑏 ) ⊆ 𝑎 | |
| 57 | difeq2 | ⊢ ( 𝑧 = 𝑎 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝑎 ) ) | |
| 58 | 57 | eleq1d | ⊢ ( 𝑧 = 𝑎 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ ( 𝐵 ∖ 𝑎 ) ∈ 𝑀 ) ) |
| 59 | 58 4 | elrab2 | ⊢ ( 𝑎 ∈ 𝐽 ↔ ( 𝑎 ∈ 𝒫 𝐵 ∧ ( 𝐵 ∖ 𝑎 ) ∈ 𝑀 ) ) |
| 60 | 59 | simplbi | ⊢ ( 𝑎 ∈ 𝐽 → 𝑎 ∈ 𝒫 𝐵 ) |
| 61 | 60 | elpwid | ⊢ ( 𝑎 ∈ 𝐽 → 𝑎 ⊆ 𝐵 ) |
| 62 | 61 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → 𝑎 ⊆ 𝐵 ) |
| 63 | 56 62 | sstrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( 𝑎 ∩ 𝑏 ) ⊆ 𝐵 ) |
| 64 | vex | ⊢ 𝑎 ∈ V | |
| 65 | 64 | inex1 | ⊢ ( 𝑎 ∩ 𝑏 ) ∈ V |
| 66 | 65 | elpw | ⊢ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 𝐵 ↔ ( 𝑎 ∩ 𝑏 ) ⊆ 𝐵 ) |
| 67 | 63 66 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 68 | difindi | ⊢ ( 𝐵 ∖ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) | |
| 69 | 59 | simprbi | ⊢ ( 𝑎 ∈ 𝐽 → ( 𝐵 ∖ 𝑎 ) ∈ 𝑀 ) |
| 70 | 69 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝑀 ) |
| 71 | 28 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) |
| 72 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → 𝜑 ) | |
| 73 | uneq1 | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝑎 ) → ( 𝑥 ∪ 𝑦 ) = ( ( 𝐵 ∖ 𝑎 ) ∪ 𝑦 ) ) | |
| 74 | 73 | eleq1d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝑎 ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑀 ↔ ( ( 𝐵 ∖ 𝑎 ) ∪ 𝑦 ) ∈ 𝑀 ) ) |
| 75 | 74 | imbi2d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝑎 ) → ( ( 𝜑 → ( 𝑥 ∪ 𝑦 ) ∈ 𝑀 ) ↔ ( 𝜑 → ( ( 𝐵 ∖ 𝑎 ) ∪ 𝑦 ) ∈ 𝑀 ) ) ) |
| 76 | uneq2 | ⊢ ( 𝑦 = ( 𝐵 ∖ 𝑏 ) → ( ( 𝐵 ∖ 𝑎 ) ∪ 𝑦 ) = ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) ) | |
| 77 | 76 | eleq1d | ⊢ ( 𝑦 = ( 𝐵 ∖ 𝑏 ) → ( ( ( 𝐵 ∖ 𝑎 ) ∪ 𝑦 ) ∈ 𝑀 ↔ ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) ∈ 𝑀 ) ) |
| 78 | 77 | imbi2d | ⊢ ( 𝑦 = ( 𝐵 ∖ 𝑏 ) → ( ( 𝜑 → ( ( 𝐵 ∖ 𝑎 ) ∪ 𝑦 ) ∈ 𝑀 ) ↔ ( 𝜑 → ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) ∈ 𝑀 ) ) ) |
| 79 | 3 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝑀 ) |
| 80 | 79 | expcom | ⊢ ( ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) → ( 𝜑 → ( 𝑥 ∪ 𝑦 ) ∈ 𝑀 ) ) |
| 81 | 75 78 80 | vtocl2ga | ⊢ ( ( ( 𝐵 ∖ 𝑎 ) ∈ 𝑀 ∧ ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) → ( 𝜑 → ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) ∈ 𝑀 ) ) |
| 82 | 81 | imp | ⊢ ( ( ( ( 𝐵 ∖ 𝑎 ) ∈ 𝑀 ∧ ( 𝐵 ∖ 𝑏 ) ∈ 𝑀 ) ∧ 𝜑 ) → ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) ∈ 𝑀 ) |
| 83 | 70 71 72 82 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( ( 𝐵 ∖ 𝑎 ) ∪ ( 𝐵 ∖ 𝑏 ) ) ∈ 𝑀 ) |
| 84 | 68 83 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( 𝐵 ∖ ( 𝑎 ∩ 𝑏 ) ) ∈ 𝑀 ) |
| 85 | difeq2 | ⊢ ( 𝑧 = ( 𝑎 ∩ 𝑏 ) → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ ( 𝑎 ∩ 𝑏 ) ) ) | |
| 86 | 85 | eleq1d | ⊢ ( 𝑧 = ( 𝑎 ∩ 𝑏 ) → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ ( 𝐵 ∖ ( 𝑎 ∩ 𝑏 ) ) ∈ 𝑀 ) ) |
| 87 | 86 4 | elrab2 | ⊢ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝐽 ↔ ( ( 𝑎 ∩ 𝑏 ) ∈ 𝒫 𝐵 ∧ ( 𝐵 ∖ ( 𝑎 ∩ 𝑏 ) ) ∈ 𝑀 ) ) |
| 88 | 67 84 87 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ 𝐽 ) |
| 89 | 88 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐽 ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∩ 𝑏 ) ∈ 𝐽 ) |
| 90 | 45 | pwexd | ⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
| 91 | 4 90 | rabexd | ⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 92 | istopg | ⊢ ( 𝐽 ∈ V → ( 𝐽 ∈ Top ↔ ( ∀ 𝑎 ( 𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑎 ∈ 𝐽 ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∩ 𝑏 ) ∈ 𝐽 ) ) ) | |
| 93 | 91 92 | syl | ⊢ ( 𝜑 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑎 ( 𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑎 ∈ 𝐽 ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∩ 𝑏 ) ∈ 𝐽 ) ) ) |
| 94 | 55 89 93 | mpbir2and | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 95 | 9 | unissi | ⊢ ∪ 𝐽 ⊆ ∪ 𝒫 𝐵 |
| 96 | unipw | ⊢ ∪ 𝒫 𝐵 = 𝐵 | |
| 97 | 95 96 | sseqtri | ⊢ ∪ 𝐽 ⊆ 𝐵 |
| 98 | pwidg | ⊢ ( 𝐵 ∈ 𝑀 → 𝐵 ∈ 𝒫 𝐵 ) | |
| 99 | 45 98 | syl | ⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐵 ) |
| 100 | difid | ⊢ ( 𝐵 ∖ 𝐵 ) = ∅ | |
| 101 | 100 2 | eqeltrid | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐵 ) ∈ 𝑀 ) |
| 102 | difeq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ 𝐵 ) ) | |
| 103 | 102 | eleq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ ( 𝐵 ∖ 𝐵 ) ∈ 𝑀 ) ) |
| 104 | 103 4 | elrab2 | ⊢ ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ∈ 𝒫 𝐵 ∧ ( 𝐵 ∖ 𝐵 ) ∈ 𝑀 ) ) |
| 105 | 99 101 104 | sylanbrc | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) |
| 106 | unissel | ⊢ ( ( ∪ 𝐽 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐽 ) → ∪ 𝐽 = 𝐵 ) | |
| 107 | 97 105 106 | sylancr | ⊢ ( 𝜑 → ∪ 𝐽 = 𝐵 ) |
| 108 | 107 | eqcomd | ⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 109 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) | |
| 110 | 94 108 109 | sylanbrc | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 111 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 112 | 111 | cldval | ⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 ∪ 𝐽 ∣ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 } ) |
| 113 | 94 112 | syl | ⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 ∪ 𝐽 ∣ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 } ) |
| 114 | 107 | pweqd | ⊢ ( 𝜑 → 𝒫 ∪ 𝐽 = 𝒫 𝐵 ) |
| 115 | 107 | difeq1d | ⊢ ( 𝜑 → ( ∪ 𝐽 ∖ 𝑥 ) = ( 𝐵 ∖ 𝑥 ) ) |
| 116 | 115 | eleq1d | ⊢ ( 𝜑 → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ↔ ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 117 | 114 116 | rabeqbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ∪ 𝐽 ∣ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 } = { 𝑥 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 } ) |
| 118 | 4 | eleq2i | ⊢ ( ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 ↔ ( 𝐵 ∖ 𝑥 ) ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 } ) |
| 119 | difss | ⊢ ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 | |
| 120 | elpw2g | ⊢ ( 𝐵 ∈ 𝑀 → ( ( 𝐵 ∖ 𝑥 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 ) ) | |
| 121 | 45 120 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝑥 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 ) ) |
| 122 | 119 121 | mpbiri | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝑥 ) ∈ 𝒫 𝐵 ) |
| 123 | difeq2 | ⊢ ( 𝑧 = ( 𝐵 ∖ 𝑥 ) → ( 𝐵 ∖ 𝑧 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ) | |
| 124 | 123 | eleq1d | ⊢ ( 𝑧 = ( 𝐵 ∖ 𝑥 ) → ( ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ∈ 𝑀 ) ) |
| 125 | 124 | elrab3 | ⊢ ( ( 𝐵 ∖ 𝑥 ) ∈ 𝒫 𝐵 → ( ( 𝐵 ∖ 𝑥 ) ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 } ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ∈ 𝑀 ) ) |
| 126 | 122 125 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝑥 ) ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 } ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ∈ 𝑀 ) ) |
| 127 | 126 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑥 ) ∈ { 𝑧 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑧 ) ∈ 𝑀 } ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ∈ 𝑀 ) ) |
| 128 | 118 127 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ∈ 𝑀 ) ) |
| 129 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵 ) | |
| 130 | dfss4 | ⊢ ( 𝑥 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) = 𝑥 ) | |
| 131 | 129 130 | sylib | ⊢ ( 𝑥 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) = 𝑥 ) |
| 132 | 131 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) = 𝑥 ) |
| 133 | 132 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ ( 𝐵 ∖ 𝑥 ) ) ∈ 𝑀 ↔ 𝑥 ∈ 𝑀 ) ) |
| 134 | 128 133 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 ↔ 𝑥 ∈ 𝑀 ) ) |
| 135 | 134 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 } = { 𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀 } ) |
| 136 | incom | ⊢ ( 𝑀 ∩ 𝒫 𝐵 ) = ( 𝒫 𝐵 ∩ 𝑀 ) | |
| 137 | dfin5 | ⊢ ( 𝒫 𝐵 ∩ 𝑀 ) = { 𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀 } | |
| 138 | 136 137 | eqtri | ⊢ ( 𝑀 ∩ 𝒫 𝐵 ) = { 𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀 } |
| 139 | mresspw | ⊢ ( 𝑀 ∈ ( Moore ‘ 𝐵 ) → 𝑀 ⊆ 𝒫 𝐵 ) | |
| 140 | 1 139 | syl | ⊢ ( 𝜑 → 𝑀 ⊆ 𝒫 𝐵 ) |
| 141 | dfss2 | ⊢ ( 𝑀 ⊆ 𝒫 𝐵 ↔ ( 𝑀 ∩ 𝒫 𝐵 ) = 𝑀 ) | |
| 142 | 140 141 | sylib | ⊢ ( 𝜑 → ( 𝑀 ∩ 𝒫 𝐵 ) = 𝑀 ) |
| 143 | 138 142 | eqtr3id | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀 } = 𝑀 ) |
| 144 | 135 143 | eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑥 ) ∈ 𝐽 } = 𝑀 ) |
| 145 | 113 117 144 | 3eqtrrd | ⊢ ( 𝜑 → 𝑀 = ( Clsd ‘ 𝐽 ) ) |
| 146 | 110 145 | jca | ⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑀 = ( Clsd ‘ 𝐽 ) ) ) |