This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cldval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cldval | ⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 4 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽 ∈ Top → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ∈ V ) |
| 6 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 8 | 7 | pweqd | ⊢ ( 𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 9 | 7 | difeq1d | ⊢ ( 𝑗 = 𝐽 → ( ∪ 𝑗 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑥 ) ) |
| 10 | eleq12 | ⊢ ( ( ( ∪ 𝑗 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑥 ) ∧ 𝑗 = 𝐽 ) → ( ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) | |
| 11 | 9 10 | mpancom | ⊢ ( 𝑗 = 𝐽 → ( ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 12 | 8 11 | rabeqbidv | ⊢ ( 𝑗 = 𝐽 → { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
| 13 | df-cld | ⊢ Clsd = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ( ∪ 𝑗 ∖ 𝑥 ) ∈ 𝑗 } ) | |
| 14 | 12 13 | fvmptg | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ∈ V ) → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
| 15 | 5 14 | mpdan | ⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |