This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreiincl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiin2g | ⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∩ 𝑦 ∈ 𝐼 𝑆 = ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 = ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ) |
| 3 | simp1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 4 | uniiunlem | ⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ↔ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ) ) | |
| 5 | 4 | ibi | ⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ) |
| 7 | n0 | ⊢ ( 𝐼 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐼 ) | |
| 8 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 | |
| 9 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 | |
| 10 | 9 | nfab | ⊢ Ⅎ 𝑦 { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } |
| 11 | nfcv | ⊢ Ⅎ 𝑦 ∅ | |
| 12 | 10 11 | nfne | ⊢ Ⅎ 𝑦 { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ |
| 13 | 8 12 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) |
| 14 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ( 𝑦 ∈ 𝐼 → 𝑆 ∈ 𝐶 ) ) | |
| 15 | 14 | com12 | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → 𝑆 ∈ 𝐶 ) ) |
| 16 | elisset | ⊢ ( 𝑆 ∈ 𝐶 → ∃ 𝑠 𝑠 = 𝑆 ) | |
| 17 | rspe | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ ∃ 𝑠 𝑠 = 𝑆 ) → ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ) | |
| 18 | 17 | ex | ⊢ ( 𝑦 ∈ 𝐼 → ( ∃ 𝑠 𝑠 = 𝑆 → ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ) ) |
| 19 | 16 18 | syl5 | ⊢ ( 𝑦 ∈ 𝐼 → ( 𝑆 ∈ 𝐶 → ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ) ) |
| 20 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ↔ ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) | |
| 21 | 19 20 | imbitrdi | ⊢ ( 𝑦 ∈ 𝐼 → ( 𝑆 ∈ 𝐶 → ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) ) |
| 22 | 15 21 | syld | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) ) |
| 23 | abn0 | ⊢ ( { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ↔ ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) | |
| 24 | 22 23 | imbitrrdi | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) ) |
| 25 | 13 24 | exlimi | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) ) |
| 26 | 7 25 | sylbi | ⊢ ( 𝐼 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) |
| 28 | 27 | 3adant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) |
| 29 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ∧ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) → ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ∈ 𝐶 ) | |
| 30 | 3 6 28 29 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ∈ 𝐶 ) |
| 31 | 2 30 | eqeltrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |