This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topologies over a given base set form a Moore collection: the intersection of any family of them is a topology, including the empty (relative) intersection which gives the discrete topology distop . (Contributed by Stefan O'Rear, 31-Jan-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toponmre | ⊢ ( 𝐵 ∈ 𝑉 → ( TopOn ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponsspwpw | ⊢ ( TopOn ‘ 𝐵 ) ⊆ 𝒫 𝒫 𝐵 | |
| 2 | 1 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( TopOn ‘ 𝐵 ) ⊆ 𝒫 𝒫 𝐵 ) |
| 3 | distopon | ⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ ( TopOn ‘ 𝐵 ) ) | |
| 4 | simpl | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ) | |
| 5 | 4 | sselda | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( TopOn ‘ 𝐵 ) ) |
| 6 | 5 | adantrl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ ( TopOn ‘ 𝐵 ) ) |
| 7 | topontop | ⊢ ( 𝑥 ∈ ( TopOn ‘ 𝐵 ) → 𝑥 ∈ Top ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ Top ) |
| 9 | simpl | ⊢ ( ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ⊆ ∩ 𝑏 ) | |
| 10 | intss1 | ⊢ ( 𝑥 ∈ 𝑏 → ∩ 𝑏 ⊆ 𝑥 ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → ∩ 𝑏 ⊆ 𝑥 ) |
| 12 | 9 11 | sstrd | ⊢ ( ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ⊆ 𝑥 ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑐 ⊆ 𝑥 ) |
| 14 | uniopn | ⊢ ( ( 𝑥 ∈ Top ∧ 𝑐 ⊆ 𝑥 ) → ∪ 𝑐 ∈ 𝑥 ) | |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ⊆ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → ∪ 𝑐 ∈ 𝑥 ) |
| 16 | 15 | expr | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ⊆ ∩ 𝑏 ) → ( 𝑥 ∈ 𝑏 → ∪ 𝑐 ∈ 𝑥 ) ) |
| 17 | 16 | ralrimiv | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ⊆ ∩ 𝑏 ) → ∀ 𝑥 ∈ 𝑏 ∪ 𝑐 ∈ 𝑥 ) |
| 18 | vuniex | ⊢ ∪ 𝑐 ∈ V | |
| 19 | 18 | elint2 | ⊢ ( ∪ 𝑐 ∈ ∩ 𝑏 ↔ ∀ 𝑥 ∈ 𝑏 ∪ 𝑐 ∈ 𝑥 ) |
| 20 | 17 19 | sylibr | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ⊆ ∩ 𝑏 ) → ∪ 𝑐 ∈ ∩ 𝑏 ) |
| 21 | 20 | ex | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ) |
| 22 | 21 | alrimiv | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ) |
| 23 | simpll | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) → 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ) | |
| 24 | 23 | sselda | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑦 ∈ ( TopOn ‘ 𝐵 ) ) |
| 25 | topontop | ⊢ ( 𝑦 ∈ ( TopOn ‘ 𝐵 ) → 𝑦 ∈ Top ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑦 ∈ Top ) |
| 27 | intss1 | ⊢ ( 𝑦 ∈ 𝑏 → ∩ 𝑏 ⊆ 𝑦 ) | |
| 28 | 27 | adantl | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → ∩ 𝑏 ⊆ 𝑦 ) |
| 29 | simplrl | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑐 ∈ ∩ 𝑏 ) | |
| 30 | 28 29 | sseldd | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑐 ∈ 𝑦 ) |
| 31 | simplrr | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑥 ∈ ∩ 𝑏 ) | |
| 32 | 28 31 | sseldd | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑥 ∈ 𝑦 ) |
| 33 | inopn | ⊢ ( ( 𝑦 ∈ Top ∧ 𝑐 ∈ 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) | |
| 34 | 26 30 32 33 | syl3anc | ⊢ ( ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) ∧ 𝑦 ∈ 𝑏 ) → ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 35 | 34 | ralrimiva | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) → ∀ 𝑦 ∈ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 36 | vex | ⊢ 𝑐 ∈ V | |
| 37 | 36 | inex1 | ⊢ ( 𝑐 ∩ 𝑥 ) ∈ V |
| 38 | 37 | elint2 | ⊢ ( ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ↔ ∀ 𝑦 ∈ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ 𝑦 ) |
| 39 | 35 38 | sylibr | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ ∩ 𝑏 ) ) → ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) |
| 40 | 39 | ralrimivva | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ ∩ 𝑏 ∀ 𝑥 ∈ ∩ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) |
| 41 | intex | ⊢ ( 𝑏 ≠ ∅ ↔ ∩ 𝑏 ∈ V ) | |
| 42 | 41 | biimpi | ⊢ ( 𝑏 ≠ ∅ → ∩ 𝑏 ∈ V ) |
| 43 | 42 | adantl | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ V ) |
| 44 | istopg | ⊢ ( ∩ 𝑏 ∈ V → ( ∩ 𝑏 ∈ Top ↔ ( ∀ 𝑐 ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ∧ ∀ 𝑐 ∈ ∩ 𝑏 ∀ 𝑥 ∈ ∩ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ( ∩ 𝑏 ∈ Top ↔ ( ∀ 𝑐 ( 𝑐 ⊆ ∩ 𝑏 → ∪ 𝑐 ∈ ∩ 𝑏 ) ∧ ∀ 𝑐 ∈ ∩ 𝑏 ∀ 𝑥 ∈ ∩ 𝑏 ( 𝑐 ∩ 𝑥 ) ∈ ∩ 𝑏 ) ) ) |
| 46 | 22 40 45 | mpbir2and | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ Top ) |
| 47 | 46 | 3adant1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ Top ) |
| 48 | n0 | ⊢ ( 𝑏 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑏 ) | |
| 49 | 48 | biimpi | ⊢ ( 𝑏 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝑏 ) |
| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → ∃ 𝑥 𝑥 ∈ 𝑏 ) |
| 51 | 10 | sselda | ⊢ ( ( 𝑥 ∈ 𝑏 ∧ 𝑐 ∈ ∩ 𝑏 ) → 𝑐 ∈ 𝑥 ) |
| 52 | 51 | ancoms | ⊢ ( ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ∈ 𝑥 ) |
| 53 | elssuni | ⊢ ( 𝑐 ∈ 𝑥 → 𝑐 ⊆ ∪ 𝑥 ) | |
| 54 | 52 53 | syl | ⊢ ( ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) → 𝑐 ⊆ ∪ 𝑥 ) |
| 55 | 54 | adantl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑐 ⊆ ∪ 𝑥 ) |
| 56 | 5 | adantrl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ ( TopOn ‘ 𝐵 ) ) |
| 57 | toponuni | ⊢ ( 𝑥 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝑥 ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝐵 = ∪ 𝑥 ) |
| 59 | 55 58 | sseqtrrd | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ ( 𝑐 ∈ ∩ 𝑏 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑐 ⊆ 𝐵 ) |
| 60 | 59 | expr | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → ( 𝑥 ∈ 𝑏 → 𝑐 ⊆ 𝐵 ) ) |
| 61 | 60 | exlimdv | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → ( ∃ 𝑥 𝑥 ∈ 𝑏 → 𝑐 ⊆ 𝐵 ) ) |
| 62 | 50 61 | mpd | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ ∩ 𝑏 ) → 𝑐 ⊆ 𝐵 ) |
| 63 | 62 | ralrimiva | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ ∩ 𝑏 𝑐 ⊆ 𝐵 ) |
| 64 | unissb | ⊢ ( ∪ ∩ 𝑏 ⊆ 𝐵 ↔ ∀ 𝑐 ∈ ∩ 𝑏 𝑐 ⊆ 𝐵 ) | |
| 65 | 63 64 | sylibr | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∪ ∩ 𝑏 ⊆ 𝐵 ) |
| 66 | 65 | 3adant1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∪ ∩ 𝑏 ⊆ 𝐵 ) |
| 67 | 4 | sselda | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → 𝑐 ∈ ( TopOn ‘ 𝐵 ) ) |
| 68 | toponuni | ⊢ ( 𝑐 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝑐 ) | |
| 69 | 67 68 | syl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → 𝐵 = ∪ 𝑐 ) |
| 70 | topontop | ⊢ ( 𝑐 ∈ ( TopOn ‘ 𝐵 ) → 𝑐 ∈ Top ) | |
| 71 | eqid | ⊢ ∪ 𝑐 = ∪ 𝑐 | |
| 72 | 71 | topopn | ⊢ ( 𝑐 ∈ Top → ∪ 𝑐 ∈ 𝑐 ) |
| 73 | 67 70 72 | 3syl | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → ∪ 𝑐 ∈ 𝑐 ) |
| 74 | 69 73 | eqeltrd | ⊢ ( ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑏 ) → 𝐵 ∈ 𝑐 ) |
| 75 | 74 | ralrimiva | ⊢ ( ( 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) |
| 76 | 75 | 3adant1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) |
| 77 | elintg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ∩ 𝑏 ↔ ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) ) | |
| 78 | 77 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ( 𝐵 ∈ ∩ 𝑏 ↔ ∀ 𝑐 ∈ 𝑏 𝐵 ∈ 𝑐 ) ) |
| 79 | 76 78 | mpbird | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → 𝐵 ∈ ∩ 𝑏 ) |
| 80 | unissel | ⊢ ( ( ∪ ∩ 𝑏 ⊆ 𝐵 ∧ 𝐵 ∈ ∩ 𝑏 ) → ∪ ∩ 𝑏 = 𝐵 ) | |
| 81 | 66 79 80 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∪ ∩ 𝑏 = 𝐵 ) |
| 82 | 81 | eqcomd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → 𝐵 = ∪ ∩ 𝑏 ) |
| 83 | istopon | ⊢ ( ∩ 𝑏 ∈ ( TopOn ‘ 𝐵 ) ↔ ( ∩ 𝑏 ∈ Top ∧ 𝐵 = ∪ ∩ 𝑏 ) ) | |
| 84 | 47 82 83 | sylanbrc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑏 ⊆ ( TopOn ‘ 𝐵 ) ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ ( TopOn ‘ 𝐵 ) ) |
| 85 | 2 3 84 | ismred | ⊢ ( 𝐵 ∈ 𝑉 → ( TopOn ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |