This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mretopd.m | |- ( ph -> M e. ( Moore ` B ) ) |
|
| mretopd.z | |- ( ph -> (/) e. M ) |
||
| mretopd.u | |- ( ( ph /\ x e. M /\ y e. M ) -> ( x u. y ) e. M ) |
||
| mretopd.j | |- J = { z e. ~P B | ( B \ z ) e. M } |
||
| Assertion | mretopd | |- ( ph -> ( J e. ( TopOn ` B ) /\ M = ( Clsd ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mretopd.m | |- ( ph -> M e. ( Moore ` B ) ) |
|
| 2 | mretopd.z | |- ( ph -> (/) e. M ) |
|
| 3 | mretopd.u | |- ( ( ph /\ x e. M /\ y e. M ) -> ( x u. y ) e. M ) |
|
| 4 | mretopd.j | |- J = { z e. ~P B | ( B \ z ) e. M } |
|
| 5 | unieq | |- ( a = (/) -> U. a = U. (/) ) |
|
| 6 | uni0 | |- U. (/) = (/) |
|
| 7 | 5 6 | eqtrdi | |- ( a = (/) -> U. a = (/) ) |
| 8 | 7 | eleq1d | |- ( a = (/) -> ( U. a e. J <-> (/) e. J ) ) |
| 9 | 4 | ssrab3 | |- J C_ ~P B |
| 10 | sstr | |- ( ( a C_ J /\ J C_ ~P B ) -> a C_ ~P B ) |
|
| 11 | 9 10 | mpan2 | |- ( a C_ J -> a C_ ~P B ) |
| 12 | 11 | adantl | |- ( ( ph /\ a C_ J ) -> a C_ ~P B ) |
| 13 | sspwuni | |- ( a C_ ~P B <-> U. a C_ B ) |
|
| 14 | 12 13 | sylib | |- ( ( ph /\ a C_ J ) -> U. a C_ B ) |
| 15 | vuniex | |- U. a e. _V |
|
| 16 | 15 | elpw | |- ( U. a e. ~P B <-> U. a C_ B ) |
| 17 | 14 16 | sylibr | |- ( ( ph /\ a C_ J ) -> U. a e. ~P B ) |
| 18 | 17 | adantr | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> U. a e. ~P B ) |
| 19 | uniiun | |- U. a = U_ b e. a b |
|
| 20 | 19 | difeq2i | |- ( B \ U. a ) = ( B \ U_ b e. a b ) |
| 21 | iindif2 | |- ( a =/= (/) -> |^|_ b e. a ( B \ b ) = ( B \ U_ b e. a b ) ) |
|
| 22 | 21 | adantl | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> |^|_ b e. a ( B \ b ) = ( B \ U_ b e. a b ) ) |
| 23 | 1 | ad2antrr | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> M e. ( Moore ` B ) ) |
| 24 | simpr | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> a =/= (/) ) |
|
| 25 | difeq2 | |- ( z = b -> ( B \ z ) = ( B \ b ) ) |
|
| 26 | 25 | eleq1d | |- ( z = b -> ( ( B \ z ) e. M <-> ( B \ b ) e. M ) ) |
| 27 | 26 4 | elrab2 | |- ( b e. J <-> ( b e. ~P B /\ ( B \ b ) e. M ) ) |
| 28 | 27 | simprbi | |- ( b e. J -> ( B \ b ) e. M ) |
| 29 | 28 | rgen | |- A. b e. J ( B \ b ) e. M |
| 30 | ssralv | |- ( a C_ J -> ( A. b e. J ( B \ b ) e. M -> A. b e. a ( B \ b ) e. M ) ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ a C_ J ) -> ( A. b e. J ( B \ b ) e. M -> A. b e. a ( B \ b ) e. M ) ) |
| 32 | 29 31 | mpi | |- ( ( ph /\ a C_ J ) -> A. b e. a ( B \ b ) e. M ) |
| 33 | 32 | adantr | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> A. b e. a ( B \ b ) e. M ) |
| 34 | mreiincl | |- ( ( M e. ( Moore ` B ) /\ a =/= (/) /\ A. b e. a ( B \ b ) e. M ) -> |^|_ b e. a ( B \ b ) e. M ) |
|
| 35 | 23 24 33 34 | syl3anc | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> |^|_ b e. a ( B \ b ) e. M ) |
| 36 | 22 35 | eqeltrrd | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> ( B \ U_ b e. a b ) e. M ) |
| 37 | 20 36 | eqeltrid | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> ( B \ U. a ) e. M ) |
| 38 | difeq2 | |- ( z = U. a -> ( B \ z ) = ( B \ U. a ) ) |
|
| 39 | 38 | eleq1d | |- ( z = U. a -> ( ( B \ z ) e. M <-> ( B \ U. a ) e. M ) ) |
| 40 | 39 4 | elrab2 | |- ( U. a e. J <-> ( U. a e. ~P B /\ ( B \ U. a ) e. M ) ) |
| 41 | 18 37 40 | sylanbrc | |- ( ( ( ph /\ a C_ J ) /\ a =/= (/) ) -> U. a e. J ) |
| 42 | 0elpw | |- (/) e. ~P B |
|
| 43 | 42 | a1i | |- ( ph -> (/) e. ~P B ) |
| 44 | mre1cl | |- ( M e. ( Moore ` B ) -> B e. M ) |
|
| 45 | 1 44 | syl | |- ( ph -> B e. M ) |
| 46 | difeq2 | |- ( z = (/) -> ( B \ z ) = ( B \ (/) ) ) |
|
| 47 | dif0 | |- ( B \ (/) ) = B |
|
| 48 | 46 47 | eqtrdi | |- ( z = (/) -> ( B \ z ) = B ) |
| 49 | 48 | eleq1d | |- ( z = (/) -> ( ( B \ z ) e. M <-> B e. M ) ) |
| 50 | 49 4 | elrab2 | |- ( (/) e. J <-> ( (/) e. ~P B /\ B e. M ) ) |
| 51 | 43 45 50 | sylanbrc | |- ( ph -> (/) e. J ) |
| 52 | 51 | adantr | |- ( ( ph /\ a C_ J ) -> (/) e. J ) |
| 53 | 8 41 52 | pm2.61ne | |- ( ( ph /\ a C_ J ) -> U. a e. J ) |
| 54 | 53 | ex | |- ( ph -> ( a C_ J -> U. a e. J ) ) |
| 55 | 54 | alrimiv | |- ( ph -> A. a ( a C_ J -> U. a e. J ) ) |
| 56 | inss1 | |- ( a i^i b ) C_ a |
|
| 57 | difeq2 | |- ( z = a -> ( B \ z ) = ( B \ a ) ) |
|
| 58 | 57 | eleq1d | |- ( z = a -> ( ( B \ z ) e. M <-> ( B \ a ) e. M ) ) |
| 59 | 58 4 | elrab2 | |- ( a e. J <-> ( a e. ~P B /\ ( B \ a ) e. M ) ) |
| 60 | 59 | simplbi | |- ( a e. J -> a e. ~P B ) |
| 61 | 60 | elpwid | |- ( a e. J -> a C_ B ) |
| 62 | 61 | ad2antrl | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> a C_ B ) |
| 63 | 56 62 | sstrid | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( a i^i b ) C_ B ) |
| 64 | vex | |- a e. _V |
|
| 65 | 64 | inex1 | |- ( a i^i b ) e. _V |
| 66 | 65 | elpw | |- ( ( a i^i b ) e. ~P B <-> ( a i^i b ) C_ B ) |
| 67 | 63 66 | sylibr | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( a i^i b ) e. ~P B ) |
| 68 | difindi | |- ( B \ ( a i^i b ) ) = ( ( B \ a ) u. ( B \ b ) ) |
|
| 69 | 59 | simprbi | |- ( a e. J -> ( B \ a ) e. M ) |
| 70 | 69 | ad2antrl | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( B \ a ) e. M ) |
| 71 | 28 | ad2antll | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( B \ b ) e. M ) |
| 72 | simpl | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ph ) |
|
| 73 | uneq1 | |- ( x = ( B \ a ) -> ( x u. y ) = ( ( B \ a ) u. y ) ) |
|
| 74 | 73 | eleq1d | |- ( x = ( B \ a ) -> ( ( x u. y ) e. M <-> ( ( B \ a ) u. y ) e. M ) ) |
| 75 | 74 | imbi2d | |- ( x = ( B \ a ) -> ( ( ph -> ( x u. y ) e. M ) <-> ( ph -> ( ( B \ a ) u. y ) e. M ) ) ) |
| 76 | uneq2 | |- ( y = ( B \ b ) -> ( ( B \ a ) u. y ) = ( ( B \ a ) u. ( B \ b ) ) ) |
|
| 77 | 76 | eleq1d | |- ( y = ( B \ b ) -> ( ( ( B \ a ) u. y ) e. M <-> ( ( B \ a ) u. ( B \ b ) ) e. M ) ) |
| 78 | 77 | imbi2d | |- ( y = ( B \ b ) -> ( ( ph -> ( ( B \ a ) u. y ) e. M ) <-> ( ph -> ( ( B \ a ) u. ( B \ b ) ) e. M ) ) ) |
| 79 | 3 | 3expb | |- ( ( ph /\ ( x e. M /\ y e. M ) ) -> ( x u. y ) e. M ) |
| 80 | 79 | expcom | |- ( ( x e. M /\ y e. M ) -> ( ph -> ( x u. y ) e. M ) ) |
| 81 | 75 78 80 | vtocl2ga | |- ( ( ( B \ a ) e. M /\ ( B \ b ) e. M ) -> ( ph -> ( ( B \ a ) u. ( B \ b ) ) e. M ) ) |
| 82 | 81 | imp | |- ( ( ( ( B \ a ) e. M /\ ( B \ b ) e. M ) /\ ph ) -> ( ( B \ a ) u. ( B \ b ) ) e. M ) |
| 83 | 70 71 72 82 | syl21anc | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( ( B \ a ) u. ( B \ b ) ) e. M ) |
| 84 | 68 83 | eqeltrid | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( B \ ( a i^i b ) ) e. M ) |
| 85 | difeq2 | |- ( z = ( a i^i b ) -> ( B \ z ) = ( B \ ( a i^i b ) ) ) |
|
| 86 | 85 | eleq1d | |- ( z = ( a i^i b ) -> ( ( B \ z ) e. M <-> ( B \ ( a i^i b ) ) e. M ) ) |
| 87 | 86 4 | elrab2 | |- ( ( a i^i b ) e. J <-> ( ( a i^i b ) e. ~P B /\ ( B \ ( a i^i b ) ) e. M ) ) |
| 88 | 67 84 87 | sylanbrc | |- ( ( ph /\ ( a e. J /\ b e. J ) ) -> ( a i^i b ) e. J ) |
| 89 | 88 | ralrimivva | |- ( ph -> A. a e. J A. b e. J ( a i^i b ) e. J ) |
| 90 | 45 | pwexd | |- ( ph -> ~P B e. _V ) |
| 91 | 4 90 | rabexd | |- ( ph -> J e. _V ) |
| 92 | istopg | |- ( J e. _V -> ( J e. Top <-> ( A. a ( a C_ J -> U. a e. J ) /\ A. a e. J A. b e. J ( a i^i b ) e. J ) ) ) |
|
| 93 | 91 92 | syl | |- ( ph -> ( J e. Top <-> ( A. a ( a C_ J -> U. a e. J ) /\ A. a e. J A. b e. J ( a i^i b ) e. J ) ) ) |
| 94 | 55 89 93 | mpbir2and | |- ( ph -> J e. Top ) |
| 95 | 9 | unissi | |- U. J C_ U. ~P B |
| 96 | unipw | |- U. ~P B = B |
|
| 97 | 95 96 | sseqtri | |- U. J C_ B |
| 98 | pwidg | |- ( B e. M -> B e. ~P B ) |
|
| 99 | 45 98 | syl | |- ( ph -> B e. ~P B ) |
| 100 | difid | |- ( B \ B ) = (/) |
|
| 101 | 100 2 | eqeltrid | |- ( ph -> ( B \ B ) e. M ) |
| 102 | difeq2 | |- ( z = B -> ( B \ z ) = ( B \ B ) ) |
|
| 103 | 102 | eleq1d | |- ( z = B -> ( ( B \ z ) e. M <-> ( B \ B ) e. M ) ) |
| 104 | 103 4 | elrab2 | |- ( B e. J <-> ( B e. ~P B /\ ( B \ B ) e. M ) ) |
| 105 | 99 101 104 | sylanbrc | |- ( ph -> B e. J ) |
| 106 | unissel | |- ( ( U. J C_ B /\ B e. J ) -> U. J = B ) |
|
| 107 | 97 105 106 | sylancr | |- ( ph -> U. J = B ) |
| 108 | 107 | eqcomd | |- ( ph -> B = U. J ) |
| 109 | istopon | |- ( J e. ( TopOn ` B ) <-> ( J e. Top /\ B = U. J ) ) |
|
| 110 | 94 108 109 | sylanbrc | |- ( ph -> J e. ( TopOn ` B ) ) |
| 111 | eqid | |- U. J = U. J |
|
| 112 | 111 | cldval | |- ( J e. Top -> ( Clsd ` J ) = { x e. ~P U. J | ( U. J \ x ) e. J } ) |
| 113 | 94 112 | syl | |- ( ph -> ( Clsd ` J ) = { x e. ~P U. J | ( U. J \ x ) e. J } ) |
| 114 | 107 | pweqd | |- ( ph -> ~P U. J = ~P B ) |
| 115 | 107 | difeq1d | |- ( ph -> ( U. J \ x ) = ( B \ x ) ) |
| 116 | 115 | eleq1d | |- ( ph -> ( ( U. J \ x ) e. J <-> ( B \ x ) e. J ) ) |
| 117 | 114 116 | rabeqbidv | |- ( ph -> { x e. ~P U. J | ( U. J \ x ) e. J } = { x e. ~P B | ( B \ x ) e. J } ) |
| 118 | 4 | eleq2i | |- ( ( B \ x ) e. J <-> ( B \ x ) e. { z e. ~P B | ( B \ z ) e. M } ) |
| 119 | difss | |- ( B \ x ) C_ B |
|
| 120 | elpw2g | |- ( B e. M -> ( ( B \ x ) e. ~P B <-> ( B \ x ) C_ B ) ) |
|
| 121 | 45 120 | syl | |- ( ph -> ( ( B \ x ) e. ~P B <-> ( B \ x ) C_ B ) ) |
| 122 | 119 121 | mpbiri | |- ( ph -> ( B \ x ) e. ~P B ) |
| 123 | difeq2 | |- ( z = ( B \ x ) -> ( B \ z ) = ( B \ ( B \ x ) ) ) |
|
| 124 | 123 | eleq1d | |- ( z = ( B \ x ) -> ( ( B \ z ) e. M <-> ( B \ ( B \ x ) ) e. M ) ) |
| 125 | 124 | elrab3 | |- ( ( B \ x ) e. ~P B -> ( ( B \ x ) e. { z e. ~P B | ( B \ z ) e. M } <-> ( B \ ( B \ x ) ) e. M ) ) |
| 126 | 122 125 | syl | |- ( ph -> ( ( B \ x ) e. { z e. ~P B | ( B \ z ) e. M } <-> ( B \ ( B \ x ) ) e. M ) ) |
| 127 | 126 | adantr | |- ( ( ph /\ x e. ~P B ) -> ( ( B \ x ) e. { z e. ~P B | ( B \ z ) e. M } <-> ( B \ ( B \ x ) ) e. M ) ) |
| 128 | 118 127 | bitrid | |- ( ( ph /\ x e. ~P B ) -> ( ( B \ x ) e. J <-> ( B \ ( B \ x ) ) e. M ) ) |
| 129 | elpwi | |- ( x e. ~P B -> x C_ B ) |
|
| 130 | dfss4 | |- ( x C_ B <-> ( B \ ( B \ x ) ) = x ) |
|
| 131 | 129 130 | sylib | |- ( x e. ~P B -> ( B \ ( B \ x ) ) = x ) |
| 132 | 131 | adantl | |- ( ( ph /\ x e. ~P B ) -> ( B \ ( B \ x ) ) = x ) |
| 133 | 132 | eleq1d | |- ( ( ph /\ x e. ~P B ) -> ( ( B \ ( B \ x ) ) e. M <-> x e. M ) ) |
| 134 | 128 133 | bitrd | |- ( ( ph /\ x e. ~P B ) -> ( ( B \ x ) e. J <-> x e. M ) ) |
| 135 | 134 | rabbidva | |- ( ph -> { x e. ~P B | ( B \ x ) e. J } = { x e. ~P B | x e. M } ) |
| 136 | incom | |- ( M i^i ~P B ) = ( ~P B i^i M ) |
|
| 137 | dfin5 | |- ( ~P B i^i M ) = { x e. ~P B | x e. M } |
|
| 138 | 136 137 | eqtri | |- ( M i^i ~P B ) = { x e. ~P B | x e. M } |
| 139 | mresspw | |- ( M e. ( Moore ` B ) -> M C_ ~P B ) |
|
| 140 | 1 139 | syl | |- ( ph -> M C_ ~P B ) |
| 141 | dfss2 | |- ( M C_ ~P B <-> ( M i^i ~P B ) = M ) |
|
| 142 | 140 141 | sylib | |- ( ph -> ( M i^i ~P B ) = M ) |
| 143 | 138 142 | eqtr3id | |- ( ph -> { x e. ~P B | x e. M } = M ) |
| 144 | 135 143 | eqtrd | |- ( ph -> { x e. ~P B | ( B \ x ) e. J } = M ) |
| 145 | 113 117 144 | 3eqtrrd | |- ( ph -> M = ( Clsd ` J ) ) |
| 146 | 110 145 | jca | |- ( ph -> ( J e. ( TopOn ` B ) /\ M = ( Clsd ` J ) ) ) |