This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for class difference. Theorem 40 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difindi | ⊢ ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin3 | ⊢ ( 𝐵 ∩ 𝐶 ) = ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) | |
| 2 | 1 | difeq2i | ⊢ ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) = ( 𝐴 ∖ ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) ) |
| 3 | indi | ⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) ) | |
| 4 | dfin2 | ⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∖ ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) ) | |
| 5 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 6 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∖ 𝐶 ) | |
| 7 | 5 6 | uneq12i | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |
| 8 | 3 4 7 | 3eqtr3i | ⊢ ( 𝐴 ∖ ( V ∖ ( ( V ∖ 𝐵 ) ∪ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |
| 9 | 2 8 | eqtri | ⊢ ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |