This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mplsubg and mpllss . (Contributed by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| Assertion | mplsubglem2 | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝑔 supp ( 0g ‘ 𝑅 ) ) ∈ Fin } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 4 | mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 2 1 5 6 3 | mplbas | ⊢ 𝑈 = { 𝑔 ∈ ( Base ‘ 𝑆 ) ∣ 𝑔 finSupp ( 0g ‘ 𝑅 ) } |
| 8 | 1 5 | psrelbasfun | ⊢ ( 𝑔 ∈ ( Base ‘ 𝑆 ) → Fun 𝑔 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) → Fun 𝑔 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) → 𝑔 ∈ ( Base ‘ 𝑆 ) ) | |
| 11 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 12 | funisfsupp | ⊢ ( ( Fun 𝑔 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) → ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ↔ ( 𝑔 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ↔ ( 𝑔 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) ) |
| 14 | 13 | rabbidva | ⊢ ( 𝜑 → { 𝑔 ∈ ( Base ‘ 𝑆 ) ∣ 𝑔 finSupp ( 0g ‘ 𝑅 ) } = { 𝑔 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝑔 supp ( 0g ‘ 𝑅 ) ) ∈ Fin } ) |
| 15 | 7 14 | eqtrid | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝑔 supp ( 0g ‘ 𝑅 ) ) ∈ Fin } ) |