This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islssd.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | |
| islssd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) | ||
| islssd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | ||
| islssd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) | ||
| islssd.t | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | ||
| islssd.s | ⊢ ( 𝜑 → 𝑆 = ( LSubSp ‘ 𝑊 ) ) | ||
| islssd.u | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) | ||
| islssd.z | ⊢ ( 𝜑 → 𝑈 ≠ ∅ ) | ||
| islssd.c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) | ||
| Assertion | islssd | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssd.f | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) | |
| 2 | islssd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) | |
| 3 | islssd.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) | |
| 4 | islssd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) | |
| 5 | islssd.t | ⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) | |
| 6 | islssd.s | ⊢ ( 𝜑 → 𝑆 = ( LSubSp ‘ 𝑊 ) ) | |
| 7 | islssd.u | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) | |
| 8 | islssd.z | ⊢ ( 𝜑 → 𝑈 ≠ ∅ ) | |
| 9 | islssd.c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) | |
| 10 | 7 3 | sseqtrd | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 11 | 9 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑎 ∈ 𝑈 → ( 𝑏 ∈ 𝑈 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) ) ) |
| 12 | 11 | imp43 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
| 13 | 12 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 15 | 1 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 | 2 15 | eqtrd | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 18 | 4 | oveqd | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ) |
| 19 | 5 | oveqd | ⊢ ( 𝜑 → ( 𝑥 · 𝑎 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ) |
| 21 | 18 20 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ) |
| 22 | 21 | eleq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
| 23 | 22 | 2ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
| 24 | 14 17 23 | 3imtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
| 25 | 24 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) |
| 26 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 27 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 29 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 30 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 31 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 32 | 26 27 28 29 30 31 | islss | ⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
| 33 | 10 8 25 32 | syl3anbrc | ⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 34 | 33 6 | eleqtrrd | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |