This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrvscacl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrvscacl.n | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| psrvscacl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrvscacl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrvscacl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrvscacl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| psrvscacl.y | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | psrvscacl | ⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvscacl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrvscacl.n | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 3 | psrvscacl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | psrvscacl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | psrvscacl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | psrvscacl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 7 | psrvscacl.y | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | 3 8 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 11 | 5 10 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 12 | fconst6g | ⊢ ( 𝑋 ∈ 𝐾 → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) | |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | 1 3 14 4 7 | psrelbas | ⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 16 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 17 | 16 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 18 | 17 | a1i | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 19 | inidm | ⊢ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 20 | 11 13 15 18 18 19 | off | ⊢ ( 𝜑 → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 21 | 3 | fvexi | ⊢ 𝐾 ∈ V |
| 22 | 21 17 | elmap | ⊢ ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝐹 ) ∈ ( 𝐾 ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 23 | 20 22 | sylibr | ⊢ ( 𝜑 → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝐹 ) ∈ ( 𝐾 ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 24 | 1 2 3 4 8 14 6 7 | psrvsca | ⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝐹 ) ) |
| 25 | reldmpsr | ⊢ Rel dom mPwSer | |
| 26 | 25 1 4 | elbasov | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 27 | 7 26 | syl | ⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 28 | 27 | simpld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 29 | 1 3 14 4 28 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 30 | 23 24 29 | 3eltr4d | ⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) ∈ 𝐵 ) |