This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrsca.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrsca.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| Assertion | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrsca.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrsca.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 4 | psrvalstr | ⊢ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) Struct 〈 1 , 9 〉 | |
| 5 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 6 | snsstp1 | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ⊆ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } | |
| 7 | ssun2 | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) | |
| 8 | 6 7 | sstri | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
| 9 | 4 5 8 | strfv | ⊢ ( 𝑅 ∈ 𝑊 → 𝑅 = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 15 | eqid | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 16 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 17 | 1 11 15 16 2 | psrbas | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
| 18 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 19 | 1 16 12 18 | psrplusg | ⊢ ( +g ‘ 𝑆 ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑆 ) ) ) |
| 20 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 21 | 1 16 13 20 15 | psrmulr | ⊢ ( .r ‘ 𝑆 ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑧 ∈ ( Base ‘ 𝑆 ) ↦ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑤 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑧 ‘ ( 𝑤 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) | |
| 23 | eqidd | ⊢ ( 𝜑 → ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) ) | |
| 24 | 1 11 12 13 14 15 17 19 21 22 23 2 3 | psrval | ⊢ ( 𝜑 → 𝑆 = ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝜑 → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝑆 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑓 ∈ ( Base ‘ 𝑆 ) ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 26 | 10 25 | eqtr4d | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |