This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set D of finite bags (the primary applications being A = Fin and A = ~P B for some B ), then the set of all power series whose coefficient functions are supported on an element of A is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubglem.s | |- S = ( I mPwSer R ) |
|
| mplsubglem.b | |- B = ( Base ` S ) |
||
| mplsubglem.z | |- .0. = ( 0g ` R ) |
||
| mplsubglem.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplsubglem.i | |- ( ph -> I e. W ) |
||
| mplsubglem.0 | |- ( ph -> (/) e. A ) |
||
| mplsubglem.a | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x u. y ) e. A ) |
||
| mplsubglem.y | |- ( ( ph /\ ( x e. A /\ y C_ x ) ) -> y e. A ) |
||
| mplsubglem.u | |- ( ph -> U = { g e. B | ( g supp .0. ) e. A } ) |
||
| mpllsslem.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mpllsslem | |- ( ph -> U e. ( LSubSp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubglem.s | |- S = ( I mPwSer R ) |
|
| 2 | mplsubglem.b | |- B = ( Base ` S ) |
|
| 3 | mplsubglem.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplsubglem.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | mplsubglem.i | |- ( ph -> I e. W ) |
|
| 6 | mplsubglem.0 | |- ( ph -> (/) e. A ) |
|
| 7 | mplsubglem.a | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x u. y ) e. A ) |
|
| 8 | mplsubglem.y | |- ( ( ph /\ ( x e. A /\ y C_ x ) ) -> y e. A ) |
|
| 9 | mplsubglem.u | |- ( ph -> U = { g e. B | ( g supp .0. ) e. A } ) |
|
| 10 | mpllsslem.r | |- ( ph -> R e. Ring ) |
|
| 11 | 1 5 10 | psrsca | |- ( ph -> R = ( Scalar ` S ) ) |
| 12 | eqidd | |- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
|
| 13 | 2 | a1i | |- ( ph -> B = ( Base ` S ) ) |
| 14 | eqidd | |- ( ph -> ( +g ` S ) = ( +g ` S ) ) |
|
| 15 | eqidd | |- ( ph -> ( .s ` S ) = ( .s ` S ) ) |
|
| 16 | eqidd | |- ( ph -> ( LSubSp ` S ) = ( LSubSp ` S ) ) |
|
| 17 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 18 | 10 17 | syl | |- ( ph -> R e. Grp ) |
| 19 | 1 2 3 4 5 6 7 8 9 18 | mplsubglem | |- ( ph -> U e. ( SubGrp ` S ) ) |
| 20 | 2 | subgss | |- ( U e. ( SubGrp ` S ) -> U C_ B ) |
| 21 | 19 20 | syl | |- ( ph -> U C_ B ) |
| 22 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 23 | 22 | subg0cl | |- ( U e. ( SubGrp ` S ) -> ( 0g ` S ) e. U ) |
| 24 | ne0i | |- ( ( 0g ` S ) e. U -> U =/= (/) ) |
|
| 25 | 19 23 24 | 3syl | |- ( ph -> U =/= (/) ) |
| 26 | 19 | adantr | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> U e. ( SubGrp ` S ) ) |
| 27 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 28 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 29 | 10 | adantr | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> R e. Ring ) |
| 30 | simprl | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> u e. ( Base ` R ) ) |
|
| 31 | simprr | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> v e. U ) |
|
| 32 | 9 | adantr | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> U = { g e. B | ( g supp .0. ) e. A } ) |
| 33 | 32 | eleq2d | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v e. U <-> v e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 34 | oveq1 | |- ( g = v -> ( g supp .0. ) = ( v supp .0. ) ) |
|
| 35 | 34 | eleq1d | |- ( g = v -> ( ( g supp .0. ) e. A <-> ( v supp .0. ) e. A ) ) |
| 36 | 35 | elrab | |- ( v e. { g e. B | ( g supp .0. ) e. A } <-> ( v e. B /\ ( v supp .0. ) e. A ) ) |
| 37 | 33 36 | bitrdi | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v e. U <-> ( v e. B /\ ( v supp .0. ) e. A ) ) ) |
| 38 | 31 37 | mpbid | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v e. B /\ ( v supp .0. ) e. A ) ) |
| 39 | 38 | simpld | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> v e. B ) |
| 40 | 1 27 28 2 29 30 39 | psrvscacl | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .s ` S ) v ) e. B ) |
| 41 | ovex | |- ( ( u ( .s ` S ) v ) supp .0. ) e. _V |
|
| 42 | 41 | a1i | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. _V ) |
| 43 | sseq2 | |- ( x = ( v supp .0. ) -> ( y C_ x <-> y C_ ( v supp .0. ) ) ) |
|
| 44 | 43 | imbi1d | |- ( x = ( v supp .0. ) -> ( ( y C_ x -> y e. A ) <-> ( y C_ ( v supp .0. ) -> y e. A ) ) ) |
| 45 | 44 | albidv | |- ( x = ( v supp .0. ) -> ( A. y ( y C_ x -> y e. A ) <-> A. y ( y C_ ( v supp .0. ) -> y e. A ) ) ) |
| 46 | 8 | expr | |- ( ( ph /\ x e. A ) -> ( y C_ x -> y e. A ) ) |
| 47 | 46 | alrimiv | |- ( ( ph /\ x e. A ) -> A. y ( y C_ x -> y e. A ) ) |
| 48 | 47 | ralrimiva | |- ( ph -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 50 | 38 | simprd | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v supp .0. ) e. A ) |
| 51 | 45 49 50 | rspcdva | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> A. y ( y C_ ( v supp .0. ) -> y e. A ) ) |
| 52 | 1 28 4 2 40 | psrelbas | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .s ` S ) v ) : D --> ( Base ` R ) ) |
| 53 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 54 | 30 | adantr | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> u e. ( Base ` R ) ) |
| 55 | 39 | adantr | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> v e. B ) |
| 56 | eldifi | |- ( k e. ( D \ ( v supp .0. ) ) -> k e. D ) |
|
| 57 | 56 | adantl | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> k e. D ) |
| 58 | 1 27 28 2 53 4 54 55 57 | psrvscaval | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( ( u ( .s ` S ) v ) ` k ) = ( u ( .r ` R ) ( v ` k ) ) ) |
| 59 | 1 28 4 2 39 | psrelbas | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> v : D --> ( Base ` R ) ) |
| 60 | ssidd | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v supp .0. ) C_ ( v supp .0. ) ) |
|
| 61 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 62 | 4 61 | rabex2 | |- D e. _V |
| 63 | 62 | a1i | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> D e. _V ) |
| 64 | 3 | fvexi | |- .0. e. _V |
| 65 | 64 | a1i | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> .0. e. _V ) |
| 66 | 59 60 63 65 | suppssr | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( v ` k ) = .0. ) |
| 67 | 66 | oveq2d | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( u ( .r ` R ) ( v ` k ) ) = ( u ( .r ` R ) .0. ) ) |
| 68 | 28 53 3 | ringrz | |- ( ( R e. Ring /\ u e. ( Base ` R ) ) -> ( u ( .r ` R ) .0. ) = .0. ) |
| 69 | 10 30 68 | syl2an2r | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .r ` R ) .0. ) = .0. ) |
| 70 | 69 | adantr | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( u ( .r ` R ) .0. ) = .0. ) |
| 71 | 58 67 70 | 3eqtrd | |- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( ( u ( .s ` S ) v ) ` k ) = .0. ) |
| 72 | 52 71 | suppss | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) ) |
| 73 | sseq1 | |- ( y = ( ( u ( .s ` S ) v ) supp .0. ) -> ( y C_ ( v supp .0. ) <-> ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) ) ) |
|
| 74 | eleq1 | |- ( y = ( ( u ( .s ` S ) v ) supp .0. ) -> ( y e. A <-> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) |
|
| 75 | 73 74 | imbi12d | |- ( y = ( ( u ( .s ` S ) v ) supp .0. ) -> ( ( y C_ ( v supp .0. ) -> y e. A ) <-> ( ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) ) |
| 76 | 75 | spcgv | |- ( ( ( u ( .s ` S ) v ) supp .0. ) e. _V -> ( A. y ( y C_ ( v supp .0. ) -> y e. A ) -> ( ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) ) |
| 77 | 42 51 72 76 | syl3c | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) |
| 78 | 32 | eleq2d | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) e. U <-> ( u ( .s ` S ) v ) e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 79 | oveq1 | |- ( g = ( u ( .s ` S ) v ) -> ( g supp .0. ) = ( ( u ( .s ` S ) v ) supp .0. ) ) |
|
| 80 | 79 | eleq1d | |- ( g = ( u ( .s ` S ) v ) -> ( ( g supp .0. ) e. A <-> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) |
| 81 | 80 | elrab | |- ( ( u ( .s ` S ) v ) e. { g e. B | ( g supp .0. ) e. A } <-> ( ( u ( .s ` S ) v ) e. B /\ ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) |
| 82 | 78 81 | bitrdi | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) e. U <-> ( ( u ( .s ` S ) v ) e. B /\ ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) ) |
| 83 | 40 77 82 | mpbir2and | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .s ` S ) v ) e. U ) |
| 84 | 83 | 3adantr3 | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> ( u ( .s ` S ) v ) e. U ) |
| 85 | simpr3 | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> w e. U ) |
|
| 86 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 87 | 86 | subgcl | |- ( ( U e. ( SubGrp ` S ) /\ ( u ( .s ` S ) v ) e. U /\ w e. U ) -> ( ( u ( .s ` S ) v ) ( +g ` S ) w ) e. U ) |
| 88 | 26 84 85 87 | syl3anc | |- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> ( ( u ( .s ` S ) v ) ( +g ` S ) w ) e. U ) |
| 89 | 11 12 13 14 15 16 21 25 88 | islssd | |- ( ph -> U e. ( LSubSp ` S ) ) |