This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994) (Revised by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluniab | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝑦 | |
| 3 | nfsab1 | ⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
| 5 | nfv | ⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) | |
| 6 | eleq2w | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 7 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 8 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 9 | 7 8 | bitrdi | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) ) |
| 10 | 6 9 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 11 | 4 5 10 | cbvexv1 | ⊢ ( ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |
| 12 | 1 11 | bitri | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |