This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnval.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | elmopn2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | elmopn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐴 ) ) ) ) |
| 3 | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑋 ) | |
| 4 | blssex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐴 ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐴 ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) |
| 6 | 5 | anassrs | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐴 ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) |
| 7 | 6 | ralbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) |
| 8 | 7 | pm5.32da | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐴 ) ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) ) |
| 9 | 2 8 | bitrd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) ) ) |