This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressxms | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 3 | 1 2 | xmsxmet | ⊢ ( 𝐾 ∈ ∞MetSp → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 5 | xmetres | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 7 | resres | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 8 | inxp | ⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) | |
| 9 | 8 | reseq2i | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 10 | 7 9 | eqtri | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 11 | eqid | ⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) | |
| 12 | eqid | ⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) | |
| 13 | 11 12 | ressds | ⊢ ( 𝐴 ∈ 𝑉 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 15 | incom | ⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) | |
| 16 | 11 1 | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 18 | 15 17 | eqtrid | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 19 | 18 | sqxpeqd | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 20 | 14 19 | reseq12d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 21 | 10 20 | eqtrid | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 22 | 18 | fveq2d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 23 | 6 21 22 | 3eltr3d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 24 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 25 | 24 1 2 | xmstopn | ⊢ ( 𝐾 ∈ ∞MetSp → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 28 | inss1 | ⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) | |
| 29 | xpss12 | ⊢ ( ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ∧ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 30 | 28 28 29 | mp2an | ⊢ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) |
| 31 | resabs1 | ⊢ ( ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 33 | 10 32 | eqtr4i | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 34 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) | |
| 35 | eqid | ⊢ ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) | |
| 36 | 33 34 35 | metrest | ⊢ ( ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 37 | 4 28 36 | sylancl | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 38 | 27 37 | eqtrd | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 39 | xmstps | ⊢ ( 𝐾 ∈ ∞MetSp → 𝐾 ∈ TopSp ) | |
| 40 | 1 24 | tpsuni | ⊢ ( 𝐾 ∈ TopSp → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 41 | 39 40 | syl | ⊢ ( 𝐾 ∈ ∞MetSp → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 43 | 42 | ineq2d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) |
| 44 | 15 43 | eqtrid | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 46 | 1 24 | istps | ⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 47 | 39 46 | sylib | ⊢ ( 𝐾 ∈ ∞MetSp → ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 48 | eqid | ⊢ ∪ ( TopOpen ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) | |
| 49 | 48 | restin | ⊢ ( ( ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 50 | 47 49 | sylan | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 51 | 45 50 | eqtr4d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ) |
| 52 | 21 | fveq2d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) |
| 53 | 38 51 52 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) |
| 54 | 11 24 | resstopn | ⊢ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( TopOpen ‘ ( 𝐾 ↾s 𝐴 ) ) |
| 55 | eqid | ⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) | |
| 56 | eqid | ⊢ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) | |
| 57 | 54 55 56 | isxms2 | ⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ↔ ( ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ∧ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) ) |
| 58 | 23 53 57 | sylanbrc | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |