This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.41v

Description: Restricted quantifier version 19.41v . Version of r19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020)

Ref Expression
Assertion r19.41v ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
2 anass ( ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
3 2 exbii ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
4 19.41v ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) )
5 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
6 5 bicomi ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥𝐴 𝜑 )
7 4 6 bianbi ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )
8 1 3 7 3bitr2i ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )