This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limcrcl | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-limc | ⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) | |
| 2 | 1 | elmpocl | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐵 ∈ ℂ ) ) |
| 3 | cnex | ⊢ ℂ ∈ V | |
| 4 | 3 3 | elpm2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐵 ∈ ℂ ) ↔ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ∧ 𝐵 ∈ ℂ ) ) |
| 6 | df-3an | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ↔ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ∧ 𝐵 ∈ ℂ ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐵 ∈ ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 8 | 2 7 | sylib | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |