This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunfictbso | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ⊢ ω ∈ V | |
| 2 | 1 | 0dom | ⊢ ∅ ≼ ω |
| 3 | breq1 | ⊢ ( ∪ 𝐴 = ∅ → ( ∪ 𝐴 ≼ ω ↔ ∅ ≼ ω ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( ∪ 𝐴 = ∅ → ∪ 𝐴 ≼ ω ) |
| 5 | 4 | a1d | ⊢ ( ∪ 𝐴 = ∅ → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) ) |
| 6 | n0 | ⊢ ( ∪ 𝐴 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ∪ 𝐴 ) | |
| 7 | ne0i | ⊢ ( 𝑎 ∈ ∪ 𝐴 → ∪ 𝐴 ≠ ∅ ) | |
| 8 | unieq | ⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) | |
| 9 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
| 11 | 10 | necon3i | ⊢ ( ∪ 𝐴 ≠ ∅ → 𝐴 ≠ ∅ ) |
| 12 | 7 11 | syl | ⊢ ( 𝑎 ∈ ∪ 𝐴 → 𝐴 ≠ ∅ ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 14 | simpl1 | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → 𝐴 ≼ ω ) | |
| 15 | ctex | ⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) | |
| 16 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 18 | 13 17 | mpbird | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → ∅ ≺ 𝐴 ) |
| 19 | fodomr | ⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ω ) → ∃ 𝑏 𝑏 : ω –onto→ 𝐴 ) | |
| 20 | 18 14 19 | syl2anc | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → ∃ 𝑏 𝑏 : ω –onto→ 𝐴 ) |
| 21 | omelon | ⊢ ω ∈ On | |
| 22 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 23 | 21 22 | ax-mp | ⊢ ω ∈ dom card |
| 24 | xpnum | ⊢ ( ( ω ∈ dom card ∧ ω ∈ dom card ) → ( ω × ω ) ∈ dom card ) | |
| 25 | 23 23 24 | mp2an | ⊢ ( ω × ω ) ∈ dom card |
| 26 | simplrr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝑏 : ω –onto→ 𝐴 ) | |
| 27 | fof | ⊢ ( 𝑏 : ω –onto→ 𝐴 → 𝑏 : ω ⟶ 𝐴 ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝑏 : ω ⟶ 𝐴 ) |
| 29 | simprl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝑓 ∈ ω ) | |
| 30 | 28 29 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( 𝑏 ‘ 𝑓 ) ∈ 𝐴 ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ) → ( 𝑏 ‘ 𝑓 ) ∈ 𝐴 ) |
| 32 | elssuni | ⊢ ( ( 𝑏 ‘ 𝑓 ) ∈ 𝐴 → ( 𝑏 ‘ 𝑓 ) ⊆ ∪ 𝐴 ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ) → ( 𝑏 ‘ 𝑓 ) ⊆ ∪ 𝐴 ) |
| 34 | 30 32 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( 𝑏 ‘ 𝑓 ) ⊆ ∪ 𝐴 ) |
| 35 | simpll3 | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝐵 Or ∪ 𝐴 ) | |
| 36 | soss | ⊢ ( ( 𝑏 ‘ 𝑓 ) ⊆ ∪ 𝐴 → ( 𝐵 Or ∪ 𝐴 → 𝐵 Or ( 𝑏 ‘ 𝑓 ) ) ) | |
| 37 | 34 35 36 | sylc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝐵 Or ( 𝑏 ‘ 𝑓 ) ) |
| 38 | simpll2 | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝐴 ⊆ Fin ) | |
| 39 | 38 30 | sseldd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( 𝑏 ‘ 𝑓 ) ∈ Fin ) |
| 40 | finnisoeu | ⊢ ( ( 𝐵 Or ( 𝑏 ‘ 𝑓 ) ∧ ( 𝑏 ‘ 𝑓 ) ∈ Fin ) → ∃! ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) | |
| 41 | 37 39 40 | syl2anc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ∃! ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) |
| 42 | iotacl | ⊢ ( ∃! ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ∈ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) } ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ∈ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) } ) |
| 44 | iotaex | ⊢ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ∈ V | |
| 45 | isoeq1 | ⊢ ( 𝑎 = ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) → ( 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ) | |
| 46 | isoeq1 | ⊢ ( ℎ = 𝑎 → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ) | |
| 47 | 46 | cbvabv | ⊢ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) } = { 𝑎 ∣ 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) } |
| 48 | 44 45 47 | elab2 | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ∈ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) } ↔ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) |
| 49 | 43 48 | sylib | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) |
| 50 | isof1o | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑓 ) ) | |
| 51 | f1of | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑓 ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ⟶ ( 𝑏 ‘ 𝑓 ) ) | |
| 52 | 49 50 51 | 3syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ⟶ ( 𝑏 ‘ 𝑓 ) ) |
| 53 | 52 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ) → ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ∈ ( 𝑏 ‘ 𝑓 ) ) |
| 54 | 33 53 | sseldd | ⊢ ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ) → ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ∈ ∪ 𝐴 ) |
| 55 | simprl | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → 𝑎 ∈ ∪ 𝐴 ) | |
| 56 | 55 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ ¬ 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ) → 𝑎 ∈ ∪ 𝐴 ) |
| 57 | 54 56 | ifclda | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ∈ ∪ 𝐴 ) |
| 58 | 57 | ralrimivva | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ∀ 𝑓 ∈ ω ∀ 𝑔 ∈ ω if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ∈ ∪ 𝐴 ) |
| 59 | eqid | ⊢ ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) = ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) | |
| 60 | 59 | fmpo | ⊢ ( ∀ 𝑓 ∈ ω ∀ 𝑔 ∈ ω if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ∈ ∪ 𝐴 ↔ ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) ⟶ ∪ 𝐴 ) |
| 61 | 58 60 | sylib | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) ⟶ ∪ 𝐴 ) |
| 62 | eluni | ⊢ ( 𝑐 ∈ ∪ 𝐴 ↔ ∃ 𝑖 ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) | |
| 63 | simplrr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → 𝑏 : ω –onto→ 𝐴 ) | |
| 64 | simprr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → 𝑖 ∈ 𝐴 ) | |
| 65 | foelrn | ⊢ ( ( 𝑏 : ω –onto→ 𝐴 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑗 ∈ ω 𝑖 = ( 𝑏 ‘ 𝑗 ) ) | |
| 66 | 63 64 65 | syl2anc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → ∃ 𝑗 ∈ ω 𝑖 = ( 𝑏 ‘ 𝑗 ) ) |
| 67 | simprrl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑗 ∈ ω ) | |
| 68 | ordom | ⊢ Ord ω | |
| 69 | simpll2 | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝐴 ⊆ Fin ) | |
| 70 | simplrr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑏 : ω –onto→ 𝐴 ) | |
| 71 | 70 27 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑏 : ω ⟶ 𝐴 ) |
| 72 | 71 67 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( 𝑏 ‘ 𝑗 ) ∈ 𝐴 ) |
| 73 | 69 72 | sseldd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( 𝑏 ‘ 𝑗 ) ∈ Fin ) |
| 74 | ficardom | ⊢ ( ( 𝑏 ‘ 𝑗 ) ∈ Fin → ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ∈ ω ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ∈ ω ) |
| 76 | ordelss | ⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ∈ ω ) → ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ⊆ ω ) | |
| 77 | 68 75 76 | sylancr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ⊆ ω ) |
| 78 | elssuni | ⊢ ( ( 𝑏 ‘ 𝑗 ) ∈ 𝐴 → ( 𝑏 ‘ 𝑗 ) ⊆ ∪ 𝐴 ) | |
| 79 | 72 78 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( 𝑏 ‘ 𝑗 ) ⊆ ∪ 𝐴 ) |
| 80 | simpll3 | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝐵 Or ∪ 𝐴 ) | |
| 81 | soss | ⊢ ( ( 𝑏 ‘ 𝑗 ) ⊆ ∪ 𝐴 → ( 𝐵 Or ∪ 𝐴 → 𝐵 Or ( 𝑏 ‘ 𝑗 ) ) ) | |
| 82 | 79 80 81 | sylc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝐵 Or ( 𝑏 ‘ 𝑗 ) ) |
| 83 | finnisoeu | ⊢ ( ( 𝐵 Or ( 𝑏 ‘ 𝑗 ) ∧ ( 𝑏 ‘ 𝑗 ) ∈ Fin ) → ∃! ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) | |
| 84 | 82 73 83 | syl2anc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ∃! ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) |
| 85 | iotacl | ⊢ ( ∃! ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ∈ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) } ) | |
| 86 | 84 85 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ∈ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) } ) |
| 87 | iotaex | ⊢ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ∈ V | |
| 88 | isoeq1 | ⊢ ( 𝑎 = ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) → ( 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ↔ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ) | |
| 89 | isoeq1 | ⊢ ( ℎ = 𝑎 → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ↔ 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ) | |
| 90 | 89 | cbvabv | ⊢ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) } = { 𝑎 ∣ 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) } |
| 91 | 87 88 90 | elab2 | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ∈ { ℎ ∣ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) } ↔ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) |
| 92 | 86 91 | sylib | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) |
| 93 | isof1o | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 ) ) | |
| 94 | 92 93 | syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 ) ) |
| 95 | f1ocnv | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 ) → ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) –1-1-onto→ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | |
| 96 | f1of | ⊢ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) –1-1-onto→ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) → ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) ⟶ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | |
| 97 | 94 95 96 | 3syl | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) ⟶ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) |
| 98 | simprll | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑐 ∈ 𝑖 ) | |
| 99 | simprrr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑖 = ( 𝑏 ‘ 𝑗 ) ) | |
| 100 | 98 99 | eleqtrd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑐 ∈ ( 𝑏 ‘ 𝑗 ) ) |
| 101 | 97 100 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) |
| 102 | 77 101 | sseldd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ω ) |
| 103 | 2fveq3 | ⊢ ( 𝑓 = 𝑗 → ( card ‘ ( 𝑏 ‘ 𝑓 ) ) = ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | |
| 104 | 103 | eleq2d | ⊢ ( 𝑓 = 𝑗 → ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ↔ 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) ) |
| 105 | isoeq4 | ⊢ ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) = ( card ‘ ( 𝑏 ‘ 𝑗 ) ) → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ) | |
| 106 | 103 105 | syl | ⊢ ( 𝑓 = 𝑗 → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ) |
| 107 | fveq2 | ⊢ ( 𝑓 = 𝑗 → ( 𝑏 ‘ 𝑓 ) = ( 𝑏 ‘ 𝑗 ) ) | |
| 108 | isoeq5 | ⊢ ( ( 𝑏 ‘ 𝑓 ) = ( 𝑏 ‘ 𝑗 ) → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ) | |
| 109 | 107 108 | syl | ⊢ ( 𝑓 = 𝑗 → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ) |
| 110 | 106 109 | bitrd | ⊢ ( 𝑓 = 𝑗 → ( ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ↔ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ) |
| 111 | 110 | iotabidv | ⊢ ( 𝑓 = 𝑗 → ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) = ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ) |
| 112 | 111 | fveq1d | ⊢ ( 𝑓 = 𝑗 → ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) = ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) ) |
| 113 | 104 112 | ifbieq1d | ⊢ ( 𝑓 = 𝑗 → if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) = if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) |
| 114 | eleq1 | ⊢ ( 𝑔 = ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) → ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ↔ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) ) | |
| 115 | fveq2 | ⊢ ( 𝑔 = ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) → ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) = ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) | |
| 116 | 114 115 | ifbieq1d | ⊢ ( 𝑔 = ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) → if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) , 𝑎 ) = if ( ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) ) |
| 117 | fvex | ⊢ ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ∈ V | |
| 118 | vex | ⊢ 𝑎 ∈ V | |
| 119 | 117 118 | ifex | ⊢ if ( ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) ∈ V |
| 120 | 113 116 59 119 | ovmpo | ⊢ ( ( 𝑗 ∈ ω ∧ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ω ) → ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) = if ( ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) ) |
| 121 | 67 102 120 | syl2anc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) = if ( ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) ) |
| 122 | 101 | iftrued | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → if ( ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) = ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) |
| 123 | f1ocnvfv2 | ⊢ ( ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 ) ∧ 𝑐 ∈ ( 𝑏 ‘ 𝑗 ) ) → ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) = 𝑐 ) | |
| 124 | 94 100 123 | syl2anc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) = 𝑐 ) |
| 125 | 121 122 124 | 3eqtrrd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → 𝑐 = ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) |
| 126 | rspceov | ⊢ ( ( 𝑗 ∈ ω ∧ ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ∈ ω ∧ 𝑐 = ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ◡ ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) , ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) | |
| 127 | 67 102 125 126 | syl3anc | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) |
| 128 | 127 | expr | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → ( ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏 ‘ 𝑗 ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) |
| 129 | 128 | expd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → ( 𝑗 ∈ ω → ( 𝑖 = ( 𝑏 ‘ 𝑗 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) ) |
| 130 | 129 | rexlimdv | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → ( ∃ 𝑗 ∈ ω 𝑖 = ( 𝑏 ‘ 𝑗 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) |
| 131 | 66 130 | mpd | ⊢ ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) ∧ ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) |
| 132 | 131 | ex | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ( ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) |
| 133 | 132 | exlimdv | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ( ∃ 𝑖 ( 𝑐 ∈ 𝑖 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) |
| 134 | 62 133 | biimtrid | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ( 𝑐 ∈ ∪ 𝐴 → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) |
| 135 | 134 | ralrimiv | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ∀ 𝑐 ∈ ∪ 𝐴 ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) |
| 136 | foov | ⊢ ( ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) –onto→ ∪ 𝐴 ↔ ( ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) ⟶ ∪ 𝐴 ∧ ∀ 𝑐 ∈ ∪ 𝐴 ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) | |
| 137 | 61 135 136 | sylanbrc | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) –onto→ ∪ 𝐴 ) |
| 138 | fodomnum | ⊢ ( ( ω × ω ) ∈ dom card → ( ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( ( ℩ ℎ ℎ Isom E , 𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) , ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) –onto→ ∪ 𝐴 → ∪ 𝐴 ≼ ( ω × ω ) ) ) | |
| 139 | 25 137 138 | mpsyl | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ∪ 𝐴 ≼ ( ω × ω ) ) |
| 140 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 141 | domentr | ⊢ ( ( ∪ 𝐴 ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ∪ 𝐴 ≼ ω ) | |
| 142 | 139 140 141 | sylancl | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ ( 𝑎 ∈ ∪ 𝐴 ∧ 𝑏 : ω –onto→ 𝐴 ) ) → ∪ 𝐴 ≼ ω ) |
| 143 | 142 | expr | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → ( 𝑏 : ω –onto→ 𝐴 → ∪ 𝐴 ≼ ω ) ) |
| 144 | 143 | exlimdv | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → ( ∃ 𝑏 𝑏 : ω –onto→ 𝐴 → ∪ 𝐴 ≼ ω ) ) |
| 145 | 20 144 | mpd | ⊢ ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) ∧ 𝑎 ∈ ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) |
| 146 | 145 | expcom | ⊢ ( 𝑎 ∈ ∪ 𝐴 → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) ) |
| 147 | 146 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ ∪ 𝐴 → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) ) |
| 148 | 6 147 | sylbi | ⊢ ( ∪ 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) ) |
| 149 | 5 148 | pm2.61ine | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴 ) → ∪ 𝐴 ≼ ω ) |