This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finnisoeu | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃! 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑅 , 𝐴 ) | |
| 2 | 1 | oiexg | ⊢ ( 𝐴 ∈ Fin → OrdIso ( 𝑅 , 𝐴 ) ∈ V ) |
| 3 | 2 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → OrdIso ( 𝑅 , 𝐴 ) ∈ V ) |
| 4 | simpr | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 5 | wofi | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 We 𝐴 ) | |
| 6 | 1 | oiiso | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 8 | 1 | oien | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
| 9 | 4 5 8 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
| 10 | ficardid | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 12 | 11 | ensymd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ≈ ( card ‘ 𝐴 ) ) |
| 13 | entr | ⊢ ( ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ ( card ‘ 𝐴 ) ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ) | |
| 14 | 9 12 13 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ) |
| 15 | 1 | oion | ⊢ ( 𝐴 ∈ Fin → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
| 17 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( card ‘ 𝐴 ) ∈ ω ) |
| 19 | onomeneq | ⊢ ( ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ∧ ( card ‘ 𝐴 ) ∈ ω ) → ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ↔ dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) ) ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ↔ dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) ) ) |
| 21 | 14 20 | mpbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) ) |
| 22 | isoeq4 | ⊢ ( dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) → ( OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) |
| 24 | 7 23 | mpbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
| 25 | isoeq1 | ⊢ ( 𝑓 = OrdIso ( 𝑅 , 𝐴 ) → ( 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) | |
| 26 | 3 24 25 | spcedv | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
| 27 | wemoiso2 | ⊢ ( 𝑅 We 𝐴 → ∃* 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) | |
| 28 | 5 27 | syl | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃* 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
| 29 | df-eu | ⊢ ( ∃! 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ↔ ( ∃ 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ∧ ∃* 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) | |
| 30 | 26 28 29 | sylanbrc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃! 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |