This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foov | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –onto→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3 | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –onto→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | eqeq2d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
| 6 | 5 | rexxp | ⊢ ( ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐶 ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –onto→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧 ∈ 𝐶 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |