This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaex | ⊢ ( ℩ 𝑥 𝜑 ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | eqeltrdi | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ∈ V ) |
| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ∈ V ) |
| 5 | iotanul2 | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 5 6 | eqeltrdi | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ∈ V ) |
| 8 | 4 7 | pm2.61i | ⊢ ( ℩ 𝑥 𝜑 ) ∈ V |