This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpnum | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnum2 | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) | |
| 2 | isnum2 | ⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐵 ) | |
| 3 | reeanv | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ On ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐵 ) ) | |
| 4 | omcl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ·o 𝑦 ) ∈ On ) | |
| 5 | omxpen | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ·o 𝑦 ) ≈ ( 𝑥 × 𝑦 ) ) | |
| 6 | xpen | ⊢ ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) → ( 𝑥 × 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) | |
| 7 | entr | ⊢ ( ( ( 𝑥 ·o 𝑦 ) ≈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) → ( 𝑥 ·o 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ) → ( 𝑥 ·o 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) |
| 9 | isnumi | ⊢ ( ( ( 𝑥 ·o 𝑦 ) ∈ On ∧ ( 𝑥 ·o 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ dom card ) | |
| 10 | 4 8 9 | syl2an2r | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| 11 | 10 | ex | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) ) |
| 12 | 11 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ On ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| 13 | 3 12 | sylbir | ⊢ ( ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| 14 | 1 2 13 | syl2anb | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |