This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant A . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcosax | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) | |
| 2 | eqidd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) | |
| 3 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → cos : ℂ ⟶ ℂ ) |
| 5 | 4 | feqmptd | ⊢ ( 𝐴 ∈ ℂ → cos = ( 𝑦 ∈ ℂ ↦ ( cos ‘ 𝑦 ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑦 = ( 𝐴 · 𝑥 ) → ( cos ‘ 𝑦 ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) | |
| 7 | 1 2 5 6 | fmptco | ⊢ ( 𝐴 ∈ ℂ → ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 8 | 7 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) = ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( ℂ D ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 10 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 11 | 10 | a1i | ⊢ ( 𝐴 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 12 | 1 | fmpttd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) : ℂ ⟶ ℂ ) |
| 13 | dvcos | ⊢ ( ℂ D cos ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) | |
| 14 | 13 | dmeqi | ⊢ dom ( ℂ D cos ) = dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) |
| 15 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ℂ - ( sin ‘ 𝑥 ) ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) = ℂ ) | |
| 16 | sincl | ⊢ ( 𝑥 ∈ ℂ → ( sin ‘ 𝑥 ) ∈ ℂ ) | |
| 17 | 16 | negcld | ⊢ ( 𝑥 ∈ ℂ → - ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 18 | 15 17 | mprg | ⊢ dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ 𝑥 ) ) = ℂ |
| 19 | 14 18 | eqtri | ⊢ dom ( ℂ D cos ) = ℂ |
| 20 | 19 | a1i | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D cos ) = ℂ ) |
| 21 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 22 | 0red | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℝ ) | |
| 23 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 24 | 11 23 | dvmptc | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 25 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 26 | 1red | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℝ ) | |
| 27 | 11 | dvmptid | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 28 | 11 21 22 24 25 26 27 | dvmptmul | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) ) |
| 29 | 28 | dmeqd | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) ) |
| 30 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ℂ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ∈ V → dom ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) = ℂ ) | |
| 31 | ovex | ⊢ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ∈ V | |
| 32 | 31 | a1i | ⊢ ( 𝑥 ∈ ℂ → ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ∈ V ) |
| 33 | 30 32 | mprg | ⊢ dom ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) = ℂ |
| 34 | 29 33 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ℂ ) |
| 35 | 11 11 4 12 20 34 | dvcof | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( cos ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 36 | dvcos | ⊢ ( ℂ D cos ) = ( 𝑦 ∈ ℂ ↦ - ( sin ‘ 𝑦 ) ) | |
| 37 | 36 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D cos ) = ( 𝑦 ∈ ℂ ↦ - ( sin ‘ 𝑦 ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑦 = ( 𝐴 · 𝑥 ) → ( sin ‘ 𝑦 ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) | |
| 39 | 38 | negeqd | ⊢ ( 𝑦 = ( 𝐴 · 𝑥 ) → - ( sin ‘ 𝑦 ) = - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 40 | 1 2 37 39 | fmptco | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 41 | 40 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) |
| 42 | cnex | ⊢ ℂ ∈ V | |
| 43 | 42 | mptex | ⊢ ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V |
| 44 | ovex | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∈ V | |
| 45 | offval3 | ⊢ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∈ V ) → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) ) | |
| 46 | 43 44 45 | mp2an | ⊢ ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) |
| 47 | 46 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) ) |
| 48 | 1 | sincld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 49 | 48 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → - ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 50 | 49 | ralrimiva | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℂ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 51 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ℂ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) = ℂ ) | |
| 52 | 50 51 | syl | ⊢ ( 𝐴 ∈ ℂ → dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) = ℂ ) |
| 53 | 52 34 | ineq12d | ⊢ ( 𝐴 ∈ ℂ → ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( ℂ ∩ ℂ ) ) |
| 54 | inidm | ⊢ ( ℂ ∩ ℂ ) = ℂ | |
| 55 | 53 54 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ℂ ) |
| 56 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) | |
| 57 | 55 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ℂ ) |
| 58 | 56 57 | eleqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → 𝑦 ∈ ℂ ) |
| 59 | eqidd | ⊢ ( 𝑦 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) | |
| 60 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) | |
| 61 | 60 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( sin ‘ ( 𝐴 · 𝑥 ) ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 62 | 61 | negeqd | ⊢ ( 𝑥 = 𝑦 → - ( sin ‘ ( 𝐴 · 𝑥 ) ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 63 | 62 | adantl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 = 𝑦 ) → - ( sin ‘ ( 𝐴 · 𝑥 ) ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 64 | id | ⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) | |
| 65 | negex | ⊢ - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ V | |
| 66 | 65 | a1i | ⊢ ( 𝑦 ∈ ℂ → - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ V ) |
| 67 | 59 63 64 66 | fvmptd | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 68 | 67 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 69 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) ) ) |
| 70 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 0 · 𝑥 ) = ( 0 · 𝑦 ) ) | |
| 71 | 70 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) = ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) ) |
| 72 | mul02 | ⊢ ( 𝑦 ∈ ℂ → ( 0 · 𝑦 ) = 0 ) | |
| 73 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 74 | 72 73 | oveqan12rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = ( 0 + 𝐴 ) ) |
| 75 | addlid | ⊢ ( 𝐴 ∈ ℂ → ( 0 + 𝐴 ) = 𝐴 ) | |
| 76 | 75 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 77 | 74 76 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = 𝐴 ) |
| 78 | 71 77 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑥 = 𝑦 ) → ( ( 0 · 𝑥 ) + ( 1 · 𝐴 ) ) = 𝐴 ) |
| 79 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 80 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 81 | 69 78 79 80 | fvmptd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) = 𝐴 ) |
| 82 | 68 81 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( - ( sin ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) ) |
| 83 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) | |
| 84 | 83 | sincld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 85 | 84 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 86 | 85 80 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( - ( sin ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 87 | 82 86 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 88 | 58 87 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ) → ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 89 | 55 88 | mpteq12dva | ⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( dom ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ∩ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) ↦ ( ( ( 𝑥 ∈ ℂ ↦ - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) · ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 90 | 41 47 89 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D cos ) ∘ ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ∘f · ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 91 | 9 35 90 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 92 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑥 ) ) | |
| 93 | 92 | fveq2d | ⊢ ( 𝑦 = 𝑥 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 94 | 93 | negeqd | ⊢ ( 𝑦 = 𝑥 → - ( sin ‘ ( 𝐴 · 𝑦 ) ) = - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
| 95 | 94 | oveq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 96 | 95 | cbvmptv | ⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) |
| 97 | 91 96 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑥 ) ) ) ) ) |