This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constcncfg.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| constcncfg.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | ||
| constcncfg.c | ⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) | ||
| Assertion | constcncfg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constcncfg.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | constcncfg.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
| 3 | constcncfg.c | ⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) | |
| 4 | cncfmptc | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) | |
| 5 | 2 1 3 4 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |